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Abstract—We advocate for and present TourSense, a framework for tourist identification and preference analytics using city-scale

transport data (bus, subway, etc.). Our work is motivated by the observed limitations of utilizing traditional data sources (e.g., social

media data and survey data) that commonly suffer from the limited coverage of tourist population and unpredictable information delay.

TourSense demonstrates how the transport data can overcome these limitations and provide better insights for different stakeholders,

typically including tour agencies, transport operators, and tourists themselves. Specifically, we first propose a graph-based iterative

propagation learning algorithm to recognize tourists from public commuters. Taking advantage of the trace data from the identified

tourists, we then design a tourist preference analytics model to learn and predict their next tour, where an interactive user interface is

implemented to ease the information access and gain the insights from the analytics results. Experiments with real-world datasets

(from over 5.1 million commuters and their 462 million trips) show the promise and effectiveness of the proposed framework: the Macro

and Micro F1 scores of the tourist identification system achieve 0.8549 and 0.7154, respectively, whereas the tourist preference

analytics system improves the baselines by at least 23.53 and 11.44 percent in terms of precision and recall.

Index Terms—Data mining and knowledge discovery, transportation systems, tourist recommendation

Ç

1 INTRODUCTION

AS one of the world’s largest industries, tourism serves
as the economic pillar of many countries and cities.

The total contribution of the tourism industry to GDP was
7,600 billion U.S. dollars (3.1 percent of global GDP) and
supported 292 million jobs (9.6 percent of total employment)
in 2016.1 Taking Singapore as an example, its tourism indus-
try brought in more than 16.4 million of foreign tourists
(more than thrice the country’s population) and created
more than 160 thousand jobs for local residents in 2017.
Tracking and understanding tourists would directly benefit
local government and tour agencies to design and improve
their services, such as launching new tour routes and pro-
viding customized tour packages based on tourist’s charac-
teristics and preferences.

To capture and understand tourists and their preferen-
ces, the recent tourism analytics research mainly adopts
social media data (e.g., geotagged images in Flickr) [1],
[2], [3], where the basic assumption behind this attempt is

that most tourists would like to share their travel
moments on their online social networks. However, using
social media data may suffer from the limited coverage and
information delay: (a) only a small portion of tourists are
actively sharing their photos or travel experiences on
social media, as many travellers may not be the fans of
social networks or even not use the Internet. Furthermore,
most shared contents are popular landmarks, not cover-
ing all the places a tourist visited, and thus the insight
gained from social media data may be incomplete or
biased; (b) considering the high data roaming fees, many
social network sharings are not real-time posted. Tourists
may share their photos and feelings after a whole day’s
travel, or even after coming back to their hometowns.
Meanwhile, how to effectively and timely crawl all the
tourists’ social media information from the service pro-
viders is also challenging. Besides the social media data,
sensor network data (e.g., bluetooth data) [4] and cellular
data [5] are also adopted by the researchers for tourist
study, but they suffer from the similar limitations and
constraints.

This work attempts to tackle the above issues, by demon-
strating how the transport data can be used to identify and
analyze tourists. Despite of a diversity of local tour services
available, public transport (e.g., metro and bus) is still the
most cost-efficient and convenient travelling approach for
most tourists, especially in the densely-populated cities like
Singapore and Tokyo. Accordingly, the public transport
data offer a sufficient coverage of the tourist population.
Meanwhile, the widely adopted electronic fare payment
systems can timely record and trace tourists and their trav-
elling routes, when they tap in/ out at the gantry of a station
or boarding/alighting on a bus. In particular, we propose
a novel but practical framework for tourist analytics,

1. https://www.wttc.org/-/media/files/reports/economic-impact-
research/regions-2017/world2017.pdf
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called TourSense, that (a) first applies machine learning tech-
niques on transport data to identify tourists from public
commuters, and (b) uses the identified tourist travelling
information to conduct their preference analytics and
thereby timely makes the personalized recommendation
and prediction. To provide the practical embodiments of
the proposed framework, we take Singapore as an exem-
plary case and present the empirical experiment results
using the public transport data from the city.

Our work in this paper thus makes the following key
contributions:

� Novel Framework for Tourist Analytics: We propose a
novel framework that conducts analytics on tourists
using transport data. By leveraging on the citywide
bus and subway data, we show how the public trans-
port data can provide hard-to-obtain, tourist-specific
insights and quantitative results.

� Identification on Tourists from Public Commuters: Using
the transport data, we propose a two-phase algo-
rithm to identify tourists from public commuters.
The key innovations include (i) properly ranking
transport stations according to how they are likely to
be a destination for tourists; and (ii) designing a
graph-based novel iterative learning algorithm to
accomplish the tourist identification.

� Tourist Preference Analytics: Using the identified
tourists and their travel records, we design the per-
sonalized preference analytics and location recom-
mendation methods for tourists. The key innovation
include (i) a tourist-location transition frequency
matrix and a location-location transition frequency
matrix are designed to represent the tourist informa-
tion, and (ii) a novel recommendation model is
designed to learn tourists’ preferences for individual
locations and tours. To the best of our knowledge,
this is the first work that analyzes tourists’ public
transport trajectories for location preference study.

� Real-World Experiment and Comprehensive Evaluation:
Using the real world data from 5.1 million public
commuters and their 462 million trips, we have con-
ducted the comprehensive evaluations, which show
that the proposed framework can identify the tourist
with a F1 score over 0.85 and meanwhile outperform
all the four baselines on the personalized location
recommendation by at least 23.53 and 11.44 percent
in terms of precision and recall.

While our tourist identification and preference analytics
are both novel, we believe that the key impact of this work
is to highlight a broader possibility of understanding tou-
rists, and accordingly create innovative and personalized
services for tourists, based on the novel data sources and
information systems.

The rest of the paper is organized as follows. Section 2
depicts the overall framework architecture. Section 3
describes the tourist identification system design. Section 4
presents the tourist preference analytics system design. We
show the experimental results and demonstrate the user
interface in Section 5. The discussion and related work are
then given in Sections 6 and 7. Finally, we conclude in
Section 8.

2 SYSTEM OVERVIEW

The block diagram of the TourSense framework is illustrated
in Fig. 1, whichmainly consists of threemodules, namely pub-
lic transportation system, tourist identification system and tourist
preference analytics system. Briefly speaking, public transporta-
tion systemprovides the transportation data and infrastructure
information (e.g., subway/bus data and station information).
By leveraging on such data and information, tourist identifica-
tion system recognizes tourists from public commuters. Using
the identified tourists and their travelling traces, tourist prefer-
ence analytics system further investigates their favorite attr-
actions and tours. All the above tourist information and
analytics results will be aggregated, via specifically designed
user interface and feedback channel, and eventually provide
to different stakeholders, typically including transportation
operators, government agencies and tourists themselves. We
will elaborate the three systems in this section respectively.

2.1 Public Transportation System

The public transportation infrastructure covers different
urban transportation services (e.g., subway and bus services)
and facilities (e.g., subway and bus stations). Each service
utilizes their own informatics system to acquire relevant
commuter travelling data. For example, today’s subway
service usually employs RFID-based ticketing system to
automatically collect passengers’ ingress and egress (tap-in
and tap-out) data at each subway station. The bus service
deploys the similar ticketing system on each operating bus to
record their boarding and alighting information. The com-
muter travelling data include both real time transaction data,
which can be timely collected by the backend servers of
transportation operators, and the historical transaction data,
which are usually streamed and stored into a Hadoop dis-
tributed file system for daily maintenance and batch process-
ing. In addition, the public transportation system will also
provide the station information, including the geographic
location and nearby POIs of eachmetro station or bus stop.

2.2 Tourist Identification System

This system periodically recognizes tourists from commut-
ers using the data and information collected from the public

Fig. 1. Block diagram of the TourSense framework.
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transportation system. More specifically, it targets to iden-
tify the transport records that are generated by the riding of
tourists from the public transport data. In general, the trav-
elling population can be assumed as two groups, i.e., tou-
rists and non-tourists (non-tourists normally mean local
people). Tourists refer to the group of people who visit the
city for sightseeing purpose during a short term (e.g., a cou-
ple of days). They commonly visit places of interest, includ-
ing historic sites, museums, restaurants, shopping streets,
and stay in hotels or hostels. People who come to the city
for other purposes such as business or medical services may
not fall into the class of tourists in this system. Some local
domain knowledge and a small set of labeled commuters
information may be needed during the identification pro-
cess. The key outputs of the system is the identified tourist
sets and their riding records, which serve as the main inputs
of the upper tourist preference analytics system.

2.3 Tourist Preference Analytics System

Taking advantages of the identified tourist information,
especially their travelling traces, this system mainly con-
ducts the preference analytics on the tourists, such as pre-
dicting individual tourist’s next visiting locations and
accordingly making next POI (place of interest) recommen-
dations to those who are not sure about where to go. Such
preference analytics results can be utilized in many services.
For example, the inferred tourist preferences on his or her
unvisited locations can be used to generate the personalized
advertisement (e.g., attraction tickets and nearby dining
promotions), which can be pushed to the tourists through
different feedback channels, such as the screens on the sub-
way station gantry or the top-up machines at the ticketing
office. Moreover, the analytics results can be used by the
designed user interface to answer “next-visiting-place”
queries from tourists.

In short, the above-described three systems work cooper-
atively to acquire, process and analyze the public transpor-
tation data for tourists. The final analytics results would
possibly benefit different stakeholders, including tourists,
transportation operators and tour agencies. We will elabo-
rate our design on tourist identification system and prefer-
ence analytics systems in the subsequent two sections.

3 TOURIST IDENTIFICATION SYSTEM DESIGN

We design a two-phase algorithm to tackle the tourist iden-
tification problem. The first phase conducts the so-called sta-
tion ranking. Its main task is to assign an initial score to each
transportation station that indicating whether it is more
likely a destination for tourists or a destination for non-
tourists. The second phase conducts the so-called iterative
propagation learning, where an iterative learning algorithm is
designed using the station ranking results to accomplish the
tourist identification task. We will present the two phases in
the following parts respectively.

3.1 Phase I: Station Ranking

Intuitively, knowing someone who has visited a station with
a high (or low) initial score may increase (or reduce) our
belief that the person is a tourist. We thus compute a score
for each given station to describe whether the station is more

likely to be a destination for tourists. However, it is not a
proper way to simply use the attractiveness of a place to tou-
rists as the initial scores (such as the scores on the travel sites
like TripAdvisor). It is mainly because one place that is pop-
ular to tourists may also be popular to locals. For example,
most tourists may visit famous shopping streets in a city,
while local people may favorite them as well. We thus need
to consider the popularity of a place to both tourists and
locals when computing the initial score for each station.

One way to compute the score for a station is using the
probability of being a tourist, given that a commuter has vis-
ited that station. For simplicity, we simply denote this prob-
ability as PrðtjmiÞ, where t denotes that a commuter is a
tourist andmi denotes that the commuter has visited the ith
station. Computing the exact value of PrðtjmiÞ is not a
straightforward task, and we thus transform it using Bayes’
theorem:

PrðtjmiÞ ¼ PrðtÞ � PrðmijtÞ
PrðmiÞ ; (1)

where PrðmijtÞ is the probability of a commuter to visit the
station given that he/she is a tourist, PrðmiÞ is the prior
probability of a commuter to visit the station, and PrðtÞ is
the prior probability of a commuter to be a tourist. In the fol-
lowing, we elaborate the estimation on the above three
terms respectively.

3.1.1 Estimation on PrðmjtÞ
Computing PrðmjtÞ needs the data from tourists (not neces-
sarily the entire data from all tourists) to summarize how
often they visit each station. It is commonly known that
many tourists choose to buy one-time ticket when taking
pubic transport, which can be used to conduct the estima-
tion here. Let nt

i be the number of tourists using one-time
tickets at the station ith station, we can estimate the proba-
bility using the maximum likelihood principle:

P̂rðmijtÞ ¼ nt
iP
i n

t
i

; (2)

where P̂rðmijtÞ is the estimate of the desired probability,P
i n

t
i is the total number of the tourists at all the stations.

However, one concern is that local commuters may also buy
such one-time tickets, especially when they forget to bring
their regular ticket (e.g., electronic transport card) or have
no sufficient balance inside it. Such cases may be rare, but
the total rides from local commuters are much larger than
the rides from tourists. Hence, it is necessary to exclude
such cases before using one-time ticket transactions. In the
experiment section, we will show how to estimate nt

i using
the real-world public transport data.

3.1.2 Estimation on PrðmiÞ
PrðmiÞ describes the overall probability that one may visit
the ith station regardless one is a local commuter or a tour-
ist. Using the maximum likelihood principle, we can esti-
mate it as follows:

P̂rðmiÞ ¼ ns
i þ nr

iP
iðns

i þ nr
i Þ
; (3)
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where
P

iðns
i þ nr

i Þ is the total number of records from both
regular tickets and one-time tickets at all the stations.

3.1.3 Estimation on PrðtÞ
PrðtÞ mainly describes how likely a commuter is a tourist,
which can be regarded as a constant coefficient for all the
stations in Eq. (1). The value of PrðtÞ does not affect the
ranking of the station in terms of the assigned scores, and
accordingly a coarse estimate on PrðtÞ could be sufficient in
practice. Specifically, given nt

i as the number of tourist visit-
ing the ith station using one-time ticket, we can simply
assume the same number of tourist using regular tickets at
the same station. Accordingly, an estimate on PrðtÞ can be
made as follows:

P̂rðtÞ ¼
P

i 2n
t
iP

iðns
i þ nr

i Þ
; (4)

where
P

i 2n
t
i is the total number of tourists using either reg-

ular or one-time tickets at the ith station. In short, using
Eqs. (2), (3) and (4), we can obtain how likely a commuter is
a tourist given that he or she has visited a station, namely
the desired initial score PrðtjmiÞ for the ith station.

Note that the current estimation on PrðtÞ is based on the
simple assumption of the same number of tourists using
one-time ticket as regular ticket, which can be adjusted if
any further information and prior knowledge introduced
from the tourist side.

3.2 Phase II: Iterative Propagation Learning

3.2.1 Station-Commuter Relationship Graph

To accomplish the tourist identification task, we propose a
graph structure, called station-commuter relationship (SCR)
graph, to encapsulate all the prior knowledge, including the
initial scores on all stations, labeled and unlabeled commut-
ers in the data, as well as the interactional relationships
between stations and commuters. As illustrated in Fig. 2,
three types of nodes are defined in a SCR graph: the top
layer Q consisting of nodes that represent the unclassified
commuters, the middle layer M consisting of nodes that
represent public transport stations, and the bottom layer Z
consisting of nodes that represent the labeled commuters
(labeled as tourist or non-tourist). The weighted edge
between a commuter and a station indicates that the com-
muter has visited that station, where the weight is the num-
ber of visiting times. The stations mainly act as bridges

between commuter sets Q and Z, where the labeled com-
muter set Z is usually much smaller than the unlabeled
set Q.

3.2.2 SCR Graph Initialization

For each node in the SCR graph, it carries an initial probabil-
ity distribution: for each station node mi 2M, its initial
probability distribution can be defined as ½PrðmiÞ; 1�
PrðmiÞ�, where PrðmiÞ is calculated by Eq. (1). For each
labeled commuter node zi 2 Z, its initial probability distri-
bution would be either ½1; 0� or ½0; 1�, as it has been labeled
as tourist or non-tourist class. For each node qi 2 Q, its ini-
tial probability distribution can be defined as ½PrðqiÞ; 1�
PrðqiÞ�, where PrðqiÞ can be computed by Eq. (4).

3.2.3 Iterative Propagation Learning

After determining and initializing the desired information
from commuters and stations in the defined SCR graph, we
design a specific algorithm to cast the tourist identification
problem into a node-labelling problem. To update the prob-
ability distributions of each node qi 2 Q using the existing
information contained in the SCR graph, we propose an iter-
ative propagation learning algorithm. The basic idea behind
the proposed algorithm is that the commuters who belong
to the same class (tourist or non-tourist) tend to visit similar
stations and vice versa. Accordingly, the algorithm mainly
consists of two steps:

� STEP 1: Update the probability distributions of com-
muters based on the stations they have visited. In
each iteration, the probability distributions for all
commuter nodes are updated accordingly. Specifi-
cally, for the nodes in Q and Z, their probability val-
ues are updated based on the values of their adjacent
nodes and their own values in the last step of the
iteration. In each iteration step, the following updat-
ing rules can be used:

fk
qi
 a�fk�1

qi
þ ð1� aÞ�

P
m2NðqiÞ wqim�fk

mP
m2NðqiÞ wqim

; (5)

fk
zi
 b�fk�1

zi
þ ð1� bÞ�

P
m2NðziÞ wzim�fk

mP
m2NðziÞ wzim

; (6)

where fk
qi
and fk

zi
are the probability distributions of

commuter qi and zi at the kth step of iteration. NðqiÞ
and NðziÞ return all stations commuter qi and zi
have visited respectively, and wqim and wzim are the
weighted edge values, namely the number of times
commuters qi and zi have visited the station m,
respectively. The configurable parameter a and b are
used to control the rate of update, where larger val-
ues imply greater trust in the probability distribu-
tions from the last step of iteration.

� STEP 2: Update the probability distributions of sta-
tions based on commuters who have travelled to the
stations. In each iteration, the probability distribu-
tions for all station nodes are updated accordingly.
Specifically, for the nodes in M, their probability val-
ues are updated based on the commuter nodes and

Fig. 2. Station-commuter relationship (SCR) graph.

2410 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 12, DECEMBER 2019

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 30,2020 at 14:54:42 UTC from IEEE Xplore.  Restrictions apply. 



their own values in the last step of the iteration. In
each iteration, the following updating rule can be
used:

fk
mi
 g�fk�1

mi
þ ð1� gÞ�

P
u2NðmiÞ wumi

�fk�1
miP

u2NðmiÞ wumi

; (7)

where fk
mi

is the probability distributions of sta-
tion mi at the kth step of iteration. NðmiÞ returns all
commuters who have visited station mi, and wumi

is
the weighted edge values, namely the number
of times commuter u has visited the station mi.
Similar to STEP 1, the configurable parameter g is
used to control the rate of update, where a larger
value implies greater trust in the probability distri-
bution from the last step of iteration.

Briefly speaking, the algorithm iteratively propagates the
tourist and non-tourist information to the unknown com-
muters using the stations as a bridge. The iterative learning
process will end when the number of iterations reaches a
predefined threshold or the results converge. After that,
each commuter qi 2 Q can be assigned a class label Ĉ to
determine whether she is a tourist or not, such that:

Ĉ ¼ argmax
c

PrðqijcÞP
qi2Q PrðqijcÞ ; (8)

where c is the class label (either tourist or non-tourist),
and PrðqijcÞ is the corresponding probability. Note that we
do not directly use the individual probability distribution
results to assign the commuter class, but first perform the
normalization using all information from all the unknown
commuters in set Q. After that, the class with a larger nor-
malized value will be used to label the commuter.

For each step of the iteration, each node and its neigh-
bors are visited. Hence, the total time complexity of the
algorithm is Oð2kjEjÞ, where jEj is the number of edges in
the graph and k is the total iteration number. When neces-
sary, the algorithm can be further speeded up by parallel
execution of probability distribution update. For example,
the update of the probability distributions for each node
in Z and each node in Q can be executed concurrently, as
their nodes are not adjacent. Furthermore, the update of the
probability distributions for the nodes in M can be executed
concurrently.

In short, we propose the station ranking and iterative
propagation learning algorithms to accomplish the tourist
identification tasks, where the SCR graph is used to propa-
gate the knowledge learned from the station information
and the labeled commuters.

4 TOURIST PREFERENCE ANALYTICS

SYSTEM DESIGN

After the tourists are identified from the public commuters,
their travel information, especially their travel locations
can be directly obtained from their transport riding records.
Based on such information, the system conducts the ana-
lytics for tourist location preferences. Specifically, our
current design is to predict and recommend (1) the next
public transport alighting location, i.e., the corresponding

attraction that a tourist will visit,2 and (2) the associated
next public transport boarding location, i.e., the end point
of the tour. The first one provides the basic personalized
recommendation service, while the second one enhances
the personalization and the comprehensiveness of the
services.

4.1 Model Description

We denote a set of the identified tourists by U ¼
fu1; u2; :::; u jU j g and a set of locations (i.e., subway stations
and bus stops) by L ¼ fl1; l2; :::; l jL j g. Note that li 2 L con-
tains the descriptive information such as station name, longi-
tude, latitude, etc. For each tourist u 2 U , her historical
transport records, i.e., tours (in chronological order) is denoted
by Cu ¼ fc1; c2; :::; cn}, where each tour ci ¼< lx; ly > con-
sists of a public transport alighting location lx and the next
boarding location ly.

We first build the tourist-location visit frequency matrix
Mul to record the count of visits between tourists and loca-
tions. Intuitively, the higher the visit frequency is, the more
the location is preferred by the corresponding tourist. In
order to estimate a tourist’s ranking preference for locations,
we first denote tourist u’s preference for location l by a
binary variable ’u;l:

’u;l ¼ 1 if ru;l > 0
0 if ru;l ¼ 0

�
;

where ru;l indicates the count that u visited l. That is, if a
tourist u has visited a location l at least once, we can infer
that u likes l, otherwise, u has no explicit preference for l.
Intuitively, as the visit count grows, we are confident that
the tourist u likes the location l. By considering the visit
counts, we define a confidence level uu;l for the correspond-
ing preference ’u;l:

uu;l ¼ 1þ au � ru;l; (9)

where au is a variable controlling the influence of the
increase of the visit counts.

Accordingly, the target tourist u’s preference for the tar-
get location l can be estimated by the inner product of the
latent factor vectors for each tourist and each location:

’̂u;l ¼ u>u vl; (10)

where uu is the latent factor vector of tourist u, and vl is the
latent factor vector of location l.

Intuitively, the above two latent factor vectors can be
regarded as a low-dimensional representation for tourists
and locations respectively, where the tourist vector uu enco-
des the preferences information and the location vector vl
encodes the location property information. Once the two
latent factor vectors are learned, we are able to infer
tourist u’s next visiting attractions by predicting the associ-
ated transport locations (i.e., metro stations or bus stops).

Besides the next tourist attraction prediction, another
objective is to predict a tourist’ immediate public transport
boarding location, i.e., where the tourist wants to cease this

2. We assume the attractions are represented by the nearby metro
stations or bus stops.
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attraction visit. It can help tourists more efficiently organize
their itinerary. In order to infer such an end point of a tour-
ist attraction visit for more personalized services, we apply
Markov model to capture the transition patterns among
locations. We first define a pair of public transport alighting
location lx and the next boarding location ly as a location
transition lx ! ly. By summarizing location transition fre-
quency, we build a location-location transition frequency
matrix where each row represents an alighting location and
each column represents a next boarding location. Following
the way of representing tourists’ preference for locations,
we assign a binary variable ’s

x;y to represent the likelihood
of transition from the alighting location lx to the next board-
ing location ly:

’s
x;y ¼

1 if rsx;y > 0

0 if rsx;y ¼ 0

(
;

where rsx;y indicates the total number of transitions from lx
to ly. If the transition between lx and ly happened at least
once, we can infer that ly is likely to be the next boarding
location of lx. Intuitively, as the transition count grows, it is
more likely that lx and ly are a pair of alighting and next
boarding location. Following Eq. (9), we define the confi-
dence of the likelihood that tourists leave at the location ly
given that they arrive at the location lx as:

usx;y ¼ 1þ as � rsx;y; (11)

where as is a variable controlling the influence of the
increase of the transition counts.

In order to infer tourists’ preferences for alighting loca-
tions, as well as for alighting and the next boarding pairs
(i.e., tours), we propose a model to co-factorize tourist-
location visit matrix and location-location transition matrix,
and accordingly learn latent factor vectors of tourists and
locations. For tourists, we denote uu 2 Rf as latent factor vec-
tor of tourist u, where f indicates the dimensionality of
the latent factor vector. For locations, since we model alight-
ing location and next boarding location separately, we assign
a latent factor vector vx 2 Rf and v0y 2 Rf to each alighting
location lx and the next boarding location ly respectively. So
overall, we need to learn three sets of latent factor vectors for
tourists, alighting locations and next boarding locations,3

which share the same latent space to factor tourists’ preferen-
ces and location transition likelihood.

To co-factorize both tourist-location visit matrix and loca-
tion-location transition matrix, the loss function to be mini-
mized is defined as:

J ¼
X
u;x

uu;xð’u;x � u>u vxÞ2 þ �1

X
x;y

usx;yð’s
x;y � v>x v

0
yÞ2

þ �2

�X
u

kuuk2 þ
X
x

kvxk2 þ
X
y

kv0yk2
�
;

(12)

where �1 is a variable controlling the effect of location-
location transition matrix factorization, �2 is the regulariza-
tion parameter that controls the complexity of the model.

4.2 Model Fitting

Due to the large size of the tourist-location visit count
matrix and location-location transition matrix,4 stochastic
gradient descent (SGD), which is commonly used for con-
ventional matrix factorization, cannot be directly applied.
We thus adopt alternative least squares (ALS) [6] to effi-
ciently fit the model. The basic idea is to first fix latent factor
vectors of alighting locations and update those of tourists,
and then alternate to update latent factor vectors of alight-
ing locations by fixing those of tourists and next boarding
locations. This procedure continues until the predefined
number of iterations have been completed.

We denote latent factor matrix for tourists, public trans-
port alighting locations and the next boarding locations
by UjU j�f , VjLj�f and V0jLj�f , where each row of the matrices
corresponds to the latent factor vector of a tourist, an alight-
ing location, and a next boarding location respectively. Qu

denotes a jLj � jLj diagonal matrix where the values on the
diagonal represent the confidence of tourist u’s preferences
for the corresponding alighting locations (see Eq. (9)). Fu

represents tourist u’s real binary preferences for alighting
locations. To update tourists’ latent factor vectors, we com-
pute the gradient of J with respect to each tourist u’s latent
factor vector, and then obtain the updated latent representa-
tion:

uu ¼ ðV>QuVþ �2IÞ�1V>QuFu; (13)

where I is identity matrix. In the same way, the updated
latent factor vector of an alighting location lx is computed as
follows:

vx ¼ ðU>QxUþ �1V
0>Qs

xV
0 þ �2IÞ�1ðU>QxFx

þ�1V
0>Qs

xF
s
xÞ;

(14)

where Qx and Qs
x are jU j � jU j and jLj � jLj diagonal matri-

ces where the values on the diagonal represent the confi-
dence of the corresponding tourists’ preference for this
alighting location lx and the likelihood of the corresponding
boarding location of lx (see Eq. (11)) respectively. Fx and Fs

x

are vectors containing tourists’ binary preference for lx and
lx’s binary transition variable to boarding locations respec-
tively. Similarly, the latent factor vectors of alighting loca-
tions are updated as follows:

v0y ¼ ðV>Qs
yVþ

�2

�1
IÞ�1V>Qs

yF
s
y; (15)

where Qs
y is jLj � jLj diagonal matrix where the values on

the diagonal are the confidence of the likelihood that ly is
the next boarding location of the corresponding alighting
locations. Fs

y is a vector with alighting locations’ binary
transition variable to ly.

After the above latent factor vectors of tourists, alighting
locations and the next boarding locations are learned, we
are able to infer tourists’ next visited attractions by predict-
ing the corresponding alighting locations. Furthermore, it is
feasible to infer where tourists leave the attractions by pre-
dicting the corresponding next boarding locations. Such

3. Alighting locations and next boarding locations are from the same
location set L, but play different roles in location transition.

4. Optimization should consider all tourist-location and location-
location pairs, including both observed data and unobserved data, i.e.,
the missing values in the visit count matrix.
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location-based tour predictions provide rich opportunities
to significantly enhance tourists’ experience, e.g., by sug-
gesting top-N interesting attractions or pushing location-
aware promotion information.

Note that the matrix inversion used in the ALS algorithm
is an expensive operation, and its time complexity is nor-
mally assumed Oðf3Þ [6], where f is the dimensionality
of the latent factor vector. Accordingly, the overall time
complexity of one iteration is Oðð Uj j þ Lj jÞf3 þ Uj j Lj jf2 þ
Lj j2f2Þ, where Uj j and Lj j are the number of identified tou-
rists and the number of locations (i.e., subway stations and
bus stops) respectively. To reduce the above complexity
and speed up the ALS by eliminating the Oðf3Þ term, the
fast matrix factorization techniques [7] can be adopted in
the practical implementation.

4.3 Location Filtering

The location set L in the proposed analytics model is crucial,
which is mainly obtained from the tourist’ transport riding
traces. However, not all the locations are the real destina-
tions (i.e., tourist POIs) in their travel plans. For example,
some locations are the places where they stay (e.g., hotels or
other temporary resting sites), some are simply the stopover
for bus or subway transit, and some locations are even the
places tourists wrongly reach.

In practice, the data-driven approach can be used to con-
duct the location filtering task, and the following filtering
strategies can be selectively used:

� Accommodation places: By common sense, a tourist
normally starts a day tour from his or her staying
place, and come back after finishing the day tour.
Hence, the start and the end station of a tourist can
be excluded from the location set L.

� Transit or wrong places: If a tourist gets on a train
or bus very shortly after he or she gets off from
the same or a very close location, it can be consid-
ered as a transit behavior or wrongly reaching a
place. Accordingly, given a tourist’s boarding and
last alighting location are too close and meanwhile
the duration are too short, the corresponding loca-
tions can be excluded from the location set L. In
practice, a temporal threshold and a spatial thresh-
old can be set.

� Ambiguous places: Some records may show that a
tourist alights from one station, and after a signifi-
cant time period, he or she either boards or alights at
another station that is far away from the previous
one. Such stations can be excluded from the location
set L, as it is hard to determine the exact places the
tourist visited.

Note that the above described filtering strategies may
wrongly discard some useful locations for understanding
tourist’ travel patterns or behaviors, but they can directly
help to provide more reliable data for the preference analyt-
ics. After the location filtering, we can simply segment each
tourist’s riding trajectory into tours. Since our work uses
public transport data, each tour is described by subway or
bus stations. While each station may indicate one or several
attractions that are geographically close to each other, the
analytics and recommendation application can show all

such information. In addition, the public transportation
data are usually maintained in Hadoop systems due to their
large size, and all the above operations on the raw data may
need to be implemented using MapReduce or similar pro-
gramming models.

In short, by leveraging on the identified tourists’ records
from the public transport data, a tourist recommendation
model is constructed for understanding and predicting the
tourist preferences. We propose the model and its ALS-
based fitting techniques to co-factorizes both tourist-loca-
tion visit matrix and location-location transition matrix,
where the location filtering strategies are designed to better
support the tourist preference analytics.

5 EMPIRICAL EXPERIMENT

We have conducted the comprehensive experiments to
evaluate the performance of the proposed framework,
where we take Singapore as an exemplary case and mainly
use the data from its public transport system. In this section,
we first give an overview of Singapore’s public transport
system and its transport data, and then present the experi-
ment results for tourist identification and preference analyt-
ics using the corresponding data.

5.1 Singapore Public Transport System and Dataset

In Singapore, the public transport system mainly consists of
the subway service and the bus service. The deployed auto-
matic ticketing system for the city’s public transportation
uses a contactless ticketing card, called EZ-Link card, to
charge the trip fares at all subway stations and bus stops.
Such a ticketing system naturally tracks each commuter’s
riding, and fare is dynamically calculated based on the total
travel distance. As EZ-Link card users can enjoy a fare dis-
count, nearly all Singaporean residents use the card to take
subway and bus. For the subway service, the ticketing card
is required to tap in and tap out at the gantry to calculate
the current trip fare. EZ-Link card is also a good choice for
tourists, especially for those who stay for a few days and
frequently travel in the city. Buying an EZ-Link card
requires a minimum payment of 12 Singapore dollars
including a non-refundable 5 Singapore dollars of issuing
cost. A commuter, especially the short-stay tourist, may opt
to purchase a one-time ticket with cash and use in the same
way as an EZ-Link card. The main difference is that the per-
ride price of using one-time ticket is higher than using the
normal EZ-Link card. In addition, there is another type of
EZ-Link card, called concession card, which is only eligible
for the Singapore citizens and permanent residents, and it
offers a larger discount on trip fares specifically for local
students and senior citizens.

All the transaction records for all the EZ-Link cards
and one-time tickets can be automatically collected by
the backend public transport system. The dataset con-
tains records from both bus and subway rides that are
paid with regular EZ-Link cards, concession EZ-Link
cards and one-time tickets. Each record contains multiple
fields, and for this work, we only use several selected
fields that are summarized in Table 1. Some explanations
on the fields of Transport Mode and Payment Mode are
given below:
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� Transport_Mode: Its possible values include either
SUBWAY or BUS, and the corresponding Origin_Lo-
cation_ID and Destination_Location_ID are subway
station and bus stop respectively. All the subway sta-
tions and bus stops can be directly mapping to the
geographical location (i.e., in terms of latitude and
longitude) using the published official data.

� Payment_Mode: Its possible values include CSC,
PASS or STANDARD. CSC refers to normal adult
EZ-Link cards, PASS refers to concession cards, and
STANDARD refers to one-time tickets.

In the experiment, we mainly utilize the above described
data and information to conduct the experiments for tourist
identification and preference analytics.

5.2 Tourist Identification

5.2.1 Data Preparation

The entire experiment is conducted using three months’ rid-
ing records from 5.1 million distinct commuters and their
462 million trips. Compared to around 5.3 million local resi-
dents in Singapore, it shows a good coverage of the public
transport population in Singapore. We first preprocess the
dataset by excluding the commuters with less than 6 tuples
of travelling records with EZ-Link card (i.e., the payment
mode is CSC), as normally tourists with a few times of pub-
lic transport riding would prefer using one-time tickets (i.e.,
the payment mode is STANDARD) to saving the issuing
cost. After the pre-processing step, the leftover records con-
tains 1.7 million commuters with a total of 49.5 million
transactions. To obtain a small group of the labeled dataset
for the tourist identification task, we asked the local people
who know Singapore well to manually label 1000 tourists
using their riding records, where the criteria include the
number of active days, daily travel routes (e.g., the detailed
origin and destination stations) and the staying periods at
each station. The corresponding Kappa value is 0.92. More-
over, we also randomly sampled around 250 thousand local
commuters from the total of 420 thousand concession card
users, as only the local people (typically including Singa-
pore citizens and permanent residents) can purchase con-
cession card.

5.2.2 Parameter Estimation

We first define a key parameter r to describe how frequent a
local commuter turns to use one-time ticket due to different
personal reasons, the parameter r quantifies the ratio
between the number of one-time ticket records and the

number of regular records made by local commuters. The
basic idea to estimate r is based on the key observation that
tourists are very unlikely to visit stations that are located in
residential areas with few shopping, hotel and restaurant
facilities. We thus first ask the local people to specify a num-
ber of such stations. At these stations, the dataset shows that
there are still one-time ticket records showing these stations
as destinations, which convinces us that such rides are
mainly made from local commuters rather than tourists.
Table 2 summarizes the count of one-time ticket records ns

i ,
the count of regular EZ-Link ticket records nr

i , and their
ratio at such stations.

From Table 2, we see that the ratio
ns
i

nr
i
is relatively stable at

these stations, which partially verifies our assumption that
the parameter r is stable and independent with stations.
Hence, we can make a fair estimate on r using such infor-
mation. Moreover, we see that the ratio is still increasing
from the bottom station to the top ones, it is probably
because more tourists use one-time tickets at the top stations
in the table. Fig. 3 further shows the ratio distribution in a
descending order for all the subway stations in Singapore.
We see that the distribution exhibits a long-tail pattern,
where the ratio at the tail are getting closer to the actual
parameter r. Accordingly, we use the ratio at the last sta-
tion, called Dover station, as an estimate of parameter r.
Dover station is located next to Singapore polytechnic
school, and its nearby area does not have any famous attrac-
tions or tourism facilities but only residential buildings.
Hence, it is reasonable to assume that most of the one-time
ticket users are local commuters rather than tourists. As we
see from Table 2, the ratio at Dover station is 0.007186, and
we use it as an estimate of r in the experiment.

TABLE 1
Dataset Schema

Field Description

Card_Number_E Encrypted Card ID
Transport_Mode BUS or SUBWAY
Entry_Date Date when ride started
Entry_Time Time when ride started
Exit_Date Date when ride ended
Exit_Time Time when ride ended
Payment_Mode Method of payment
Origin_Location_ID Starting location of the ride
Destination_Location_ID Ending location of the ride

TABLE 2
Statistics of Non-Tourist Stations

Station Name ns
i nr

i

ns
i

nr
i

Marymount 6218 629435 0.009879
Yio Chu Kang 20361 2067636 0.009847
Cove 1817 189873 0.009570
Buangkok 7454 787463 0.009466
Layar 345 37211 0.00927
Oasis 489 53696 0.009107
Labrador Park 2473 292858 0.008444
Tongkang 1295 158299 0.008181
Compassvale 2705 358175 0.007552
Dover 8963 1247247 0.007186

Fig. 3. Ratio distribution at stations in a descending order.
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Accordingly, the number of tourists using one-time tick-
ets at the station ith station can be computed as follow:

nt
i ¼ ns

i � nr
i � r; (16)

where ns
i is the number of one-time ticket records and nr

i is
the number of regular ticket records at the ith station.

5.2.3 Station Score Initialization

After determining the parameter r and nt
i, we further com-

pute the initial scores for all the stations using Eq. (1).
Table 3 summarizes the top 15 stations in terms of the
decreasing order of the computed initial scores. All of the 15

stations are located nearby the famous attractions and POIs
in Singapore. The top ranked station is Changi Airport,
which is the only international airport of the city. It is a rea-
sonable result, as most tourists start or complete their trips
in this airport whereas local commuters do not often visit it
except they travelling overseas. Moreover, Table 3 also
shows that some must-visit venues, such as Orchard station
(the most famous shopping mall area) and City Hall station
(city’s central area) are ranked not that high, as local Singa-
pore citizens also frequently visit such places for shopping
or business. In short, the initialized scores for the stations
can be used to well capture the characteristics of the station
and identify tourists from local commuters.

5.2.4 Tourist Identification

We run the designed iterative propagation learning
algorithm on the proposed SCR graph with the initialized
station scores. As the configurable parameters for control-
ling the updating rate, the parameter a is usually set lower
than the other two parameters b and g, as it is used to
directly update the probability distribution for the unla-
beled commuters. In our experiment, a is set to 0.7, and the
other two are set to 0.9 by using a trail-and-error approach.
The iteration number is set to 120. Figs. 4a, 4b, 4c and 4d
showcase the four typical stages of the propagation process
respectively, namely initial stage, commuter updating stage,
station updating stage and final stage. The results from the
final stage will be used to classify the commuters.

To fully evaluate the classification performance, we
adopt both micro-averaged F1 and macro-averaged F1
measures [8] as the main metrics. Meanwhile, we compare
the proposed algorithm with the two classification methods
below:

TABLE 3
Ranked Stations Based on
Initialized Station Scores

Station Name Initialized Score

Changi Airport 0.213668
Marina Bay 0.145012
Clarke Quay 0.144702
Bayfront 0.128008
Little India 0.118879
Chinatown 0.113837
HarbourFront 0.106443
Bras Basah 0.104787
Esplanade 0.099637
Orchard 0.098623
Lavender 0.093104
Farrer Park 0.081844
Promenade 0.079080
Bugis 0.070973
City Hall 0.064815

Fig. 4. Exemplary propagation process with four typical stages.
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� Fitting The Fits (FTF) [9] model: a well-known itera-
tive inference algorithm uses labeled data and unla-
beled data, which assigns predicted values to the
observations whose responses are missing (unla-
beled data) in each iteration, and then incorporates
the predictions appropriately in the subsequent
steps.

� Support Vector Machine (SVM) model [10]: a well-
known supervised classification algorithm, and the
labeled 1 thousand tourists data are used as the posi-
tive class to train the model.

Table 4 gives the performance of the designed algorithm
against another two methods, where the parameter p repre-
sents the percentage of data used as training data. For exam-
ple, when p equals 5 percent, it means 5 percent of labeled
data is used to train the model and 95 percent is used to val-
idate the model. Table 4 shows that our algorithm achieves
0.8549 and 0.7154 on micro-averaged F1 and macro-
averaged F1 measures respectively, when 25 percent of
labeled data is used for the model training. Furthermore,
for all the p values, our algorithm achieves the higher scores
on both F1 measures compared to another two methods.
Specifically, SVM exhibits the worst performance, which is
probably caused by the limited labeled data available. The
designed algorithm achieves the best performance, as it iter-
atively propagates the labeled information and the prior
knowledge (e.g., station scores) to unlabeled dataset, and
recursively makes use of such data in the next step of itera-
tion. Lastly, we see that for all the three algorithms, the
more training data used, the better performance can be
achieved.

In short, the experiment results show that the designed
module performs well for the tourist identification task
using the public transport data, where the SCR graph and
the iterative propagation learning algorithm achieve their
design objectives. Finally, a total of 206 thousand tourists
together with their travel trajectories are identified from the
three months’ public transport data, which are used to con-
duct their preference analytics.

5.3 Tourist Preference Analytics

5.3.1 Data Preparation

The travel records of each identified tourist are first seg-
mented into individual tours, represented by the pairs of
alighting location and the immediate boarding location. To
evaluate the performance of the proposed model, we used
every tourist’s first 70 percent tours (in chronological order)
as training data for model construction, and the rest are for
testing. Moreover, we do not consider the most popular

tourist attractions, as these must-sees are visited by almost
every tourists and naturally appear in any tourist location
recommendation results. This experiment investigates the
effectiveness of the personalized preference analytics, and
thus considering such extremely popular attractions make
the personalization weaker. Moreover, it is a more interest-
ing and challenging task to discover the locations not gener-
ally popular but favored by specific tourists. Hence, in our
final evaluation results, we sort all locations based on the
number of tourist visits and remove the top 20 most popular
ones.5 The experiment results thus also show how the pro-
posed model copes with this challenge.

5.3.2 Baselines

We compare our model with four popular baselines sum-
marized as follows:

� Popularity based model (POP) [11]: This method
predicts and recommends tourists’ next visiting
attraction and tour (i.e., alighting location and next
boarding location pair in our definition) based
on the corresponding popularity, e.g., the number of
visits. It means the most popular locations and
tours are recommended to all tourists without any
personalization.

� Markov model (Markov) [12]: This method makes
recommendation based on Markov property, i.e., the
probability that a tourist visits a location x based on
her last visited location y. Specifically, two location
transition probability matrices are built, where one
matrix records the probability from one alighting
location to another alighting location (for next attrac-
tion recommendation), and the other matrix records
the probability from alighting location to the next
boarding location (for entire tour recommendation).

� User-based collaborative filtering (UCF): This is the
traditional personalized recommendation method
that predicts users’ preference for items using simi-
lar users’ information, where user-user similarity is
calculated based on their historical visit behaviors.
Two UCF models are built for next attraction
recommendation and next tour recommendation
respectively.

� Graph-based POI embedding model (GE) [13]: This
is a graph-based embedding model that jointly cap-
tures the sequential effect, geographical influence,
temporal cyclic effect and semantic effect by embed-
ding the corresponding relational graphs.

5.3.3 Metrics

The proposed model is able to recommend the top-N
locations and location pairs that are not visited by a tourist
but are most likely visited in his or her immediate plan.
To measure the accuracy of recommendations, we used
two metrics: precision@N, which is the ratio of the success-
fully predicted locations (or location pairs) to the top-N

TABLE 4
Performance Comparison on the Tourist Classification

SVM FTF Ours

p% Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

5% 0.57984 0.8415 0.6109 0.8419 0.6267 0.8504

10% 0.5917 0.8420 0.6263 0.8464 0.6572 0.8538

15% 0.6144 0.8411 0.6441 0.8433 0.6677 0.8560
20% 0.6199 0.8480 0.6758 0.8504 0.6962 0.8575

25% 0.6286 0.8402 0.6956 0.8459 0.7154 0.8549

5. The locations are represented by metro stations or bus stops. The
top 20 locations correspond to less than 10 must-see POIs in Singapore,
verified with the background knowledge.
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recommendations, and recall@N, which defines the ratio of
successfully predicted locations (or location pairs) to the
number of locations (or location pairs) to be predicted. We
will demonstrate how the performance of models varies
with different values ofN .

5.3.4 Parameter Tuning

We refer to the next attraction (public transport alighting
location) and next tour (alighting location and next board-
ing location pair) recommendation as step 1 and step 2 rec-
ommendation respectively. We first study how location-
location matrix factorization (with varying �1) influences
the performance of recommendation. We set latent factor
vector dimensionality, regularization parameter, confidence
parameters au and as to 100, 0.04, 1 and 1 respectively.
When top-5 recommendations were provided, Fig. 5 shows
precision and recall for step 1 and step 2 recommendations
with �1 varying from 0.1 to 1.5 (0.1 as the increment). We
observe that when �1 becomes larger, the precision and
recall for both steps increase. This is because more weight
for the location-location matrix factorization improves the

quality of latent factors of next boarding locations, which in
turn better fits latent factors of alighting locations and tou-
rists. However, when �1 reaches a certain threshold, the pre-
cision and recall becomes stable and larger �1 values do not
bring in evident improvements. It is worth noting that
when �1 further increases, the performance starts slightly
declining. Specifically, for step 1 recommendation, we
notice that from �1 ¼ 0:8, we get the stable results, while for
step 2 recommendation, from �1 ¼ 0:6 is a good choice.
In the following experiments, we choose the optimal � for
our model.

Next, we study the influence of latent factor vector
dimensionality f when top-5 recommendations are pro-
vided (see Fig. 6). Other parameters like location-location
matrix factorization parameter �1, regularization parameter
�2, confidence parameter au and as are set to 0.9, 0.04, 1 and
1, respectively. For step 1 (next attraction) recommendation,
we notice that the performance of our model is insensitive
to the latent factor vector dimensionality. We also test the
extreme values and observe that when the dimensionality is
smaller than 10, the precision and recall start evidently

Fig. 5. Performance with varying location-location matrix factorization parameter �1 (Top-5 recommendation).

Fig. 6. Performance with varying latent factor vector dimensionality (Top-5 recommendation).
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decreasing. On the other hand, step 2 (next tour) recommen-
dation is more sensitive to the dimensionality. From Fig. 6c
and 6d we notice that the performance is improved signifi-
cantly with the increasing latent factor vector dimensional-
ity. For instance, the precision and recall get increased by
103.02 and 97.47 percent respectively when the dimension-
ality changes from 50 to 200.

In short, if the system is only interested in next attraction
recommendation, a small latent factor vector dimensionality
like 50 to 100 may be chosen so that the model can be
trained fast; otherwise, the optimal dimensionality for the
tour recommendation task is 200, from which the the perfor-
mance become stable and the higher dimensionality does
not improve it evidently but would incur a higher computa-
tional overhead.

5.3.5 Comparison Results

We compare our model with the four baselines, i.e., POP,
Markov, UCF and GE, where the optimal parameters pre-
sented in previous subsections are used for model train-
ing. Table 5 summarizes the comparison results for next
attraction recommendation when different recommenda-
tion list is provided. As mentioned, the very top destina-
tions that will be visited by nearly all tourists (e.g., city
hall) are omitted in the performance measurement, so
that the power to predict more “personalized” locations
by different algorithms can be well reflected. As expected,
POP performs worst. This is because tourists’ visit behav-
ior is heterogeneous, therefore, simply recommending the
most popular attractions does not necessarily meet
tourists’ real needs. For instance, it is observed that the
most popular attractions in Singapore aggregate at the cit-
y’s central area, but some tourists prefer visiting natural
landscape such as botanic gardens or Bukit Timah nature
reserve. The popularity based approach fails to capture
such personalized cases.

Due to the same reason, the performance of Markov
approach is not promising either, although by learning tran-
sition patterns of attractions, on average, Markov improves
POP by 11.23 and 10.08 percent in terms of precision and
recall respectively. It is worth noting that one issue with
Markov is the data sparsity, i.e., due to limited data records,
the transition probabilities cannot be derived with a high
confidence. GE takes into account the spatiotemporal con-
text information and alleviates the data sparsity issue. It evi-
dently improves Markov, POP and UCF, while it does not
perform better than our model. One of the possible reasons
is that the moving behaviors and patterns of tourists, espe-
cially the foreign tourists in the city like Singapore, may not

strongly exhibit the desired temporal cyclic effect and
sequential patterns.

In all cases, our approach outperforms the baselines due
to two key designs: (1) Our model is applied to learn
tourists’ preference for personalization by handling the
implicit feedback information in transport data for top-N
recommendation, which is naturally suitable for our tasks.
(2) The alighting locations and the next boarding locations
are treated separately, and the location transition matrix is
factorized (jointly with tourist-location matrix factorization)
to learn tourists’ location preference. Overall, our approach
improves the baselines by at least 23.53 and 11.44 in terms
of precision and recall.

We also summarize the precision and recall for next tour
recommendation in Table 6. Similar trends are observed:
GE performs better than Markov and UCF, which outper-
form the weakest baseline POP; our approach outperforms
the four baselines. To balance the precision and recall for an
overall performance measurement, Fig. 7 further shows the
F-score comparison among the four approaches for both
next attraction and next tour predictions.

TABLE 5
Results for Next Attraction Recommendation

Top-5 Top-10 Top-15

Precision Recall Precision Recall Precision Recall

POP 0.025 0.096 0.022 0.173 0.021 0.247
Markov 0.03 0.116 0.025 0.182 0.021 0.258
UCF 0.036 0.142 0.030 0.210 0.024 0.260
GE 0.051 0.196 0.059 0.231 0.033 0.271
Ours 0.063 0.226 0.076 0.272 0.042 0.302

TABLE 6
Results for Next Tour Recommendation

Top-5 Top-10 Top-15

Precision Recall Precision Recall Precision Recall

POP 0.015 0.060 0.014 0.108 0.012 0.142
Markov 0.019 0.069 0.014 0.126 0.013 0.152
UCF 0.024 0.093 0.016 0.146 0.015 0.169
GE 0.035 0.133 0.020 0.186 0.023 0.211
Ours 0.048 0.178 0.029 0.221 0.027 0.257

Fig. 7. F-score comparison for top-k predictions.
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5.4 User Interface

An informative user interface is developed to support dif-
ferent stakeholders to access the spatial and temporal char-
acteristics of the identified tourist information, which
provides users an interactive and intuitive way to under-
stand the analytics results. Following our previous design
for tourist tracking [14], Fig. 8 shows how users can access
the analytics results from the perspective of destinations,
where a heat map is superimposed on Singapore map to
visualize the distribution of the identified tourists’ destina-
tions in the city. For example, the heat map shows that a
couple of circles found in north part of the island, where
almost no local attraction or shopping mall nearby. We then
found that it is mainly because the places provide direct bus
services between Singapore and Malaysia, where many tou-
rists board or alight there. Moreover, users can click any
place on the map to query the detailed tourist information
surrounding that location (e.g., tourist lists and their staying
periods).

Fig. 9 shows how users can access the preference analyt-
ics results from the perspective of individual tourists. On
the left side panel, a list of tourists is shown, where all the
tourist information are anonymized in the current system.
Once clicking on a tourist, the places he or she has visited
will be shown on the map (orange circles), and meanwhile
the recommended locations for this tourist will be presented
as well using the proposed preference analytics model. For
the demonstration purpose, Fig. 9 illustrates both the rec-
ommended locations (red squares) and the tourist next-visit
places (blue landmarks), where we can see two locations are
correctly recommended. Note that in the running system,
only the visited locations (orange circles) and recommended
locations (red squares) can be shown on the user interface in
real time.

6 DISCUSSION

6.1 Possible Limitations

The algorithms presented in this paper are mainly designed
for specifically identifying and analyzing tourists using
the public transport data, which may need to be further
extended to handle more general cases. For example, some
heuristics and hard conditions are imposed to identify the
tourists with a high confidence, which inevitably fail to rec-
ognize some actual tourists. Moreover, for the preference

analytics, especially when defining and constructing the
tourist-location visit matrix, we only consider the count of
visits between tourists and stations but omit some useful
information, such as their staying periods and sequence of
visiting stations. Such information can be an effective indi-
cator to show how much a tourist favors different locations
by comparing it with other tourists. In a similar vein, to
increase the accuracy of the tourist identification, the deci-
sion of labeling tourists can be made by considering more
about their staying period and visiting sequence informa-
tion. Accordingly, more accurate models for tourist identifi-
cation and preference analytics might be able to build and
reveal more interesting “tourism” patterns. Besides, the cur-
rent tourist identification solution is only applicable to the
transport data, while how to concurrently using other types
of data, such as GPS and social network data, can be an
interesting question and worth to be investigated.

On the other hand, some configurable parameters used in
the current algorithms, such as the confidence parameters au

and as used in the preference analytics model, are important
to the system. Such parameters currently are determined
mainly using trail-and-error approach. Some machine learn-
ing techniques can be introduced to automatically derive
these parameters based on the historical measurements and
accordingly provide a better robustness. For example, the
cost-sensitive classificationmodels can be employed to reflect
the application-specific tradeoff between false-negative and
false-positive errors. In addition, the current design is mainly
based on the transport system having the tap-in/tap-out con-
trol, while for the systems with the tap-in control only, some
predictive models may need to be designed and deployed to
infer passenger alighting location and traveling time.

6.2 Transportation Data Enrichment

In this work, we only use the public transportation data from
the subway and bus system. The richer and new modes of
transportation data can be introduced to further improve the
system performance. For example, taxi data can be consid-
ered to jointly analyze the tourists, as many foreign tourists
may choose taxi as their personal transport means in the city.
Currently, it is relatively hard to continuously track an indi-
vidual tourist’s traces on different taxis and link taxi data
with the public transport data. However, the emerging new
taxi payment methods may help to tackle these issues and
facilitate the taxi data collection process: for example, most

Fig. 8. User interface overview.
Fig. 9. Tourist preference analytics and prediction.
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taxis in Singapore recently start supporting passenger to pay
the fare using the near-field-communication (NFC) enabled
cards and EZ-Link cards.

6.3 Real-Time Analytics and Implementations

The empirical results presented in this work are mainly
based on the offline analytics, i.e., using historical transport
data to conduct tourist identification and preference anal-
ytics. While such offline analytics and experiments are
adequate for validating the proposed framework and dem-
onstrating how the public transport data can be used for
tourist analytics, additional enhancements and models may
be needed to support real-time analytics tasks, whose time
cost and efficiency need further careful evaluation. For
example, the tourist identification system may need to be
slightly modified to support early tourist detection that
uses the first several trips of tourist data. Similarly, tourist
preference analytics system may need to utilize the latest
tourist information to make faster recommendations. Such
system enhancement issues provide important directions
for future work.

6.4 Potential Applications

The prompt identification of tourists and their preference
can support a number of potential applications and benefit
different stakeholders, such as tourists and tourism
administrators. For example, accurate and real-time rec-
ommendation functions can be integrated into travel-plan-
ning systems, where tourists can use the information to
make better travel decisions (e.g., deciding where to go
and visit for the next days). An accurate and fine-grained
understanding of tourist personal preference can also help
tourism service providers to engage better with tourists.
For example, the service providers can design the person-
alized travelling packages, and push such product adver-
tisements on the screen of the gantry of the stations or
inside the carriages. Using the aggregated tourist travel-
ling statistics, the relevant government agencies can intelli-
gently deploy new bus fleets or walking routes specifically
designed for tourists, thereby enhance tourist experiences
by providing more convenient and comfortable travelling
solutions.

7 RELATED WORK

7.1 Tourism Research and Tourist Data

Due to the complex nature and characteristics of tour-
ism [15], many research efforts require empirical data from
tourists to analyze and model the spatio-temporal behavior
of tourists [16]. Traditionally, the tourist data were mainly
collected using labor-intensive and error-prone methods,
including direct observation [17], personal interviews [18]
and space-time diaries [19]. Recently, researchers have uti-
lized the data from global navigation satellite systems
(e.g., GPS data) [20], cellular systems (e.g., call detail
record data) [21], social media (e.g., geotagged images in
Flickr) [1], and sensor networks (e.g., bluetooth data) [4].
However, their data collection systems mainly adopt the
participatory sensing strategy, which suffers the risk of
self-selection bias (e.g., certain groups of tourists may
show a low degree of presence in the collected data). In

other words, the existing data collection methods are
hard to scale up and difficult to cover the majority of tou-
rists. Following our previous work [22] on this topic, we
innovate in utilizing public transportation data to collect
information and conduct analytics on tourists, which pro-
vides a non-intrusive and inexpensive solution to tackle
this issue.

7.2 Tourist Preference Analytics and
Recommendation

The tourist preference analytics and recommendation has
been a popular and lucrative topic due to its economic
importance, where the collaborative filtering techniques
and the POI recommendation methods have been well stud-
ied [23], [24], [25], [26]. For example, Yin et al. propose a
latent class probabilistic generative model to understand
user interests and preference using the “check-in” data
from location-based social networks [27]. Besides the mod-
els that utilize geo-social information [28], [29], temporal
information [30], [31], semantic information [32], [33], and
deep learning models have been utilized to improve POI
recommendation performance [34], [35]. For example, the
model SH-CDL [35] performs deep representation learning
for POI recommendation, where heterogeneous features of
the POIs and the collective preferences of the public in the
target regions are well exploited.

Different from most of the existing POI recommendation
studies that mainly leverage on user check-in activities and
social influences information, our tourist preference ana-
lytics model and the entire framework design target on
utilizing the information solely and directly derived from
the public transport system rather than relying on any other
information systems or sources. However, it possibly
improves the current model performance by introducing
and combining more information from both user side and
location side, such as the social influences from location-
based social networks (LBSNs) or the explicit rating score
on the POIs, together with some POI recommendation
algorithms.

7.3 Transportation Data Analytics

Taking advantage of electronic ticketing systems and on-
vehicle telematics, the large amount of public transportation
data in many cities are collected automatically and become
publicly available, typically including smart card data [36]
and taxi data [37]. By leveraging on the transportation data,
researchers primarily focus on understanding and quantify-
ing commuters’ moving patterns for the improvement of
city operations. For example, smart card data are used to
study commuter travel patterns [38], passenger segmenta-
tion [39], passenger route estimation [40], and subway
boarding analysis [41]. Similarly, taxi data are used to study
urban planning [42], passenger wait time prediction [43],
taxi and passenger queuing [45], taxi trip clustering [44]
and driver recommender systems [46]. However, a few
studies focus on analyzing transportation data to under-
stand the characteristics of a special group of commuters.
To our best knowledge, no previous work has conducted
the tourist identification and preference analytics using the
public transport data.
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8 CONCLUSION

In this paper, we have introduced TourSense framework that
first identifies tourists and subsequently conducts their
preference analytics using city-scale public transportation
data. The SCR graph together with the iterative propagation
learning is proposed to effectively recognize tourists from
public commuters. After that, a tourist preference analytics
model is constructed to predict next attraction and tour. We
have shown the promise of this approach via using the city-
scale data from Singapore public transportation system. In
the experimental results, the Macro and Micro F1 scores of
the proposed tourist identification approach achieves 0.8549
and 0.7154 respectively, and meanwhile the proposed pref-
erence analytics model improves the baselines in terms of
both precision and recall. An interactive and informative
user interface is developed to help access and visualize all
the analytics results.

On a broader canvas, the proposed framework demon-
strates the feasibility of recognizing and analyzing different
groups of public commuters, such as tourists, business trav-
ellers, local citizens, or even foreign workers. We believe
that many other insights of practical interest (e.g., the differ-
ent travel demands and behaviors between tourists and
business travellers) can be investigated using the proposed
framework and the public transport data. Moreover, this
work reveals many unique advantages of transport data
over other information sources (e.g., social media data), typ-
ically including a good coverage of population, timeliness
of information, and the usefulness of the transportation
infrastructures (e.g., subway gantries or bus stops can be
potentially used to distribute the analytics results).
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