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Abstract—Clustering of a large amount of taxi GPS mobility
data helps to understand the spatio-temporal dynamics for the
applications of urban planning and transportation. In this paper
we cluster the origin-destination pairs of the passenger taxi
rides to provide useful insight into the city mobility patterns,
urban hot-spots, road network usage and general patterns of
the crowd movement within the city of Singapore. We perform
experiments on a large scale Singapore taxi dataset consisting of
more than 10 million passenger origin-destination GPS points.
We use the clusiVAT sampling scheme to obtain the sample
trips which return coarse clusters describing the major crowd
movement and reduce the data points that are not captured by
the coarse clusters and may bring in noises during fine-grained
clustering. After the sampling step we use the well known density
based clustering algorithm DBSCAN to find cluster structure in
the sampled datapoints and later extend it to the rest of the
dataset using nearest prototype rule. We report 24 trip clusters
from the dataset which are compact enough to draw meaningful
conclusions about the city mobility patterns and the number of
trips in each cluster is large enough to be representative of the
general traffic movement.

I. INTRODUCTION

Advent of GPS enabled devices and mobile phones have
made mobility data readily available. Analysis of such a large
amount of mobility data can help understand the space time
dynamics for the applications of urban planning and trans-
portation. Many cities around the world have introduced the
concept of GPS sensor equipped taxis to enable taxi on call and
taxi tracking services. Apart from catering to these services,
these devices generate a rich GPS trace mobility data which
could provide useful insight into the city mobility patterns,
urban hot-spots, road network usage, etc. Although GPS sensor
equipped public transport such as buses and trams is quite a
norm, they have limited coverage spanning fixed routes only.
Taxis on the other hand have a wide coverage and in a city
like Singapore are one of the major mode of transportation for
the public, hence providing a fair estimate of general mobility
trends of people and of city hotspots. Depending on the data
characteristics (e.g. spatial and temporal resolution) and the
research question to be addressed, the data analytics could be
performed on the taxi trajectories (a sequence of GPS points
sampled at a regular interval) or on the origin-destination pair
for each passenger ride. In this paper we focus on the latter
class, the analysis of the origin-destination GPS pair for taxi

rides as the entire trajectories cannot reflect the boarding and
alighting pattern, and thus cannot reflect the crowd movement.
Specifically, we use data clustering to obtain general patterns
of the crowd movement within the city of Singapore.

Clustering of origin-destination locations of passenger taxi
trips could provide useful insight into the passenger movement
pattern across the city. It also helps in identifying the hot-
spot locations in the city where the taxi drivers are most
likely to find their next customer. In this paper we perform
clustering analysis on the origin-destination GPS location of
the taxi trips in Singapore. A review of major data clustering
approaches and their applications can be found in [1]. Based
on the characteristics of the dataset to be experimented on and
the desired outcome, we choose the best possible clustering
technique for our purpose as described below. The presence
of a large number of noise points, no guarantee regarding the
convex shape of the clusters and no priori information about
the number of clusters, k, to seek make partitional clustering
algorithm such as k-means unsuitable for clustering this type of
dataset. The hierarchical and density based schemes, although
does not require k as input and can find clusters of any
random shape, they becomes computationally prohibitive for
such a huge dataset. In such cases, usually random samples
are picked from the large dataset before applying density or
hierarchical clustering schemes, but the random samples may
not be representative of the entire dataset and we may need to
perform the experiment multiple times to obtain all the clusters.
In this paper we use the sampling scheme proposed in [2]–[4]
to obtain samples which return coarse clusters describing the
major crowd movement trends and minimize the datapoints
which are not in the coarse clusters as some clusters may cover
a very broad region due to the dense and wide distribution of
data points in such an area. After the sampling step we use a
density based clustering scheme DBSCAN [5] to find cluster
structure in the sampled datapoints and later extend it to the
rest of the dataset using nearest prototype rule.

The rest of the paper is organized as follows. Section II
provides a brief literature survey and describes the related
work being done in this field. Section III provides the detail
description of the Singapore taxi GPS log dataset and the
procedure to extract taxi trips from the log dataset. In section
IV, we describes the proposed clustering scheme including the
sampling algorithm. The results of the experiments performed
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TABLE I. TAXI STATUS DESCRIPTION

BUSY Taxi driver temporarily unavailable due to a personal reason
STC Taxi soon to clear the current job and ready for new bookings
FREE Taxi unoccupied and ready for taking new passengers or bookings
BREAK Taxi on a break and driver logged on mobile data terminal (MDT)
POWEROFF MDT shut down and not working
ARRIVED Taxi arrived at the booking pickup location and waiting for the passenger
ONCALL Taxi unoccupied, but accepted a new booking job
OFFLINE Taxi on a break and driver logged off from MDT
POB Passenger on board and taximeter running
PAYMENT Passenger making payment and taximeter paused
NOSHOW No passenger showing up and the booking canceled soon

on the Singapore taxi datatset are given in section V before
concluding in section VI.

II. RELATED WORK

Taxi origin-destination pair location clustering to discover
and understand spatio-temporal patterns in movement is a
relatively new and exciting field of research. Yamamoto et
al. [6] proposed an adaptive routing method for the cruising
taxis by suggesting vacant taxis to the pathways having many
potential passengers using a clustering approach. Authors in
[7], [8] used data mining techniques such as clustering and
naive Bayesian classifier on historical data to build models and
predict taxi demand in contexts of time, weather, and location.
However the works described above focus more on analyzing
the taxi trajectory as a whole rather than identifying the origin
destination clusters for taxi trips.

Wan et al. [9] used a density based hierarchical clustering
method they called “DBH-CLUS” to identify pick-up/drop-off
hotspots to propose better locations for setting up taxi stands.
Guo et al. [10] presented a new approach to the discovery
and understanding of spatio-temporal patterns in the passenger
movement using spatial clustering of the origin destination
GPS points to recognize potentially meaningful places and
map the clusters to understand the spatial distribution and
temporal trends of movements. Other notable work which
perform origin-destination GPS location clustering on taxi
trajectory data to interpret urban hotspots and crowd movement
patters include [11]–[14].

Data clustering is the problem of partitioning a set of
unlabeled objects O = {o1, o2, ..., on} into k groups of similar
objects, where 1 < k < n. Most clustering algorithms can be
divided into following four categories:

• Connectivity based clustering (hierarchical clustering)

• Centroid-based clustering

• Distribution-based clustering

• Density-based clustering

Hierarchical clustering relies on the fact that nearby objects
have a higher probability of belonging to the same cluster
than to a cluster containing objects that are farther away.
This category includes single linkage (SL), which is based on
cutting large edges in a minimum spanning tree (MST) [15].
The hierarchical clustering approaches are most general and

can be applied to any dataset (vector or relational), however
have high computational complexity and suffer from adverse
effect of Chaining [16] in presence of noise. Centroid-based
algorithms such as k-means [17], [18] depends on optimizing
an objective function, which typically measures a property
such as inter-cluster separation, within-cluster variance or
both. Although easy to implement and being computationally
efficient, the k-means algorithm require k as an input which
is usually not known. Another limitation of k-means is that it
tries to impose elliptical shape on all k clusters and hence is
not suitable for discovering oddly shaped clusters. Distribution
based clustering approaches such as Gaussian Mixture Model
(GMM) consider the data to be generated from a Gaussian
mixture model and try to find model parameters which are
most likely to produce this dataset. Although theoretically
sound, these methods suffer from a common problem called
overfitting. Since a more complex model will usually be able to
explain the data better, choosing the appropriate model com-
plexity becomes difficult. Density based clustering schemes
such as DBSCAN [5] and OPTICS [19] define clusters as
areas of higher density than the remainder of the data set.
These schemes does not require the number of clusters, k
to seek as an input and can find clusters of any arbitrary
shape but become computationally prohibitive as the dataset
size increases due to computational complexity of O(n2) for
calculating the distance matrix.

III. TAXI DATA AND TRIP EXTRACTION

A. Data

The dataset consists of the trajectories of more than 15, 000
taxis collected over a duration of 1 month. The dataset is very
dense as it consists of more than 370 million datapoints. The
general format of each datapoint is as follows: {Time Stamp,
Taxi Registration, Latitude, Longitude, Speed, Status}. The
status field of each datapoint consists of one of the 11 values
as described in Table I.

This GPS log dataset is processed to obtain taxi trip
information before applying the clustering framework on the
origin-destination GPS location of the taxi trips. The trip
extraction procedure is described in the following subsection.

B. Trip Extraction

We firstly define several important terms used in the trip
extraction.
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Definition 1. Individual taxi raw trajectory �: A temporally
ordered sequence of the taxi raw data records from one taxi,
i.e., p1 → · · · → pi → · · · → pn, where pi (1 ≤ i ≤ n)
is the tuple containing the taxi state pi.state, instantaneous
speed pi.speed, latitude coordinate pi.lat, longitude coordi-
nate pi.lon and timestamp pi.ts.

Definition 2. Taxi single trip R(s, e): A temporally ordered
sequence of taxi’s raw data records for a single trip, i.e., ps →
ps+1 → · · · → pe, where 1 ≤ s < e ≤ n.

Definition 3. Taxi trip set ω: A collection of taxi’s trip
trajectory, i.e., {Rk|k = 1, 2, · · · }, where Rk = R(sk, ek).

Definition 4.1 Taxi occupied state set Θ: { POB, STC,
PAYMENT }.

Definition 4.2 Taxi unoccupied state set Ψ: { FREE,
ONCALL, ARRIVED, NOSHOW }.

Definition 4.3 Taxi non-operational state set Λ: { BREAK,
BUSY, OFFLINE, POWEROFF }.

In order to extract each individual taxi’s trips from the raw
taxi data, we propose a simple and practical algorithm, called
trip extraction algorithm (TEA): its input is an individual taxi’s
raw trajectory � and output is the taxi trip set ω. The complete
algorithm is shown in Algorithm 1. The basic idea behind the
TEA algorithm is that a complete trip normally consists of a
certain taxi state transitions, e.g., starting from FREE to POB
and ending from POB to FREE. The algorithm uses a flag δ to
mark whether a trip starts or not, adds the each new Rk into
the trip set ω, given Rk satisfies the state transition constraint:
Rk starts with an occupied state and end with an unoccupied
state or non-operational state. In the practical implementation,
the system also filters out the trips with too short duration or
multiple non-operational states.

Algorithm 1: Trip Extraction Algorithm
Input : Taxi trajectory �.
Output: The extracted trip set ω

δ ← false; k ← 1;
for i← 1 to length(�) do

if pi.state ∈ Θ and δ=false then
Rk.Add(pi−1);Rk.Add(pi);δ ← true

else
if pi.state ∈ Θ and δ=true then

Rk.Add(pi)
else

if pi.state ∈ Ψ ∪ Λ and δ=true then
Rk.Add(pi)
ω.Add(Rk)

else
k ← k + 1;δ ← false

end
end

end
end

IV. THE PROPOSED CLUSTERING SCHEME

The clustering scheme we use for clustering origin desti-
nation GPS datapoint for taxi trips consists of two stages as
described below:

A. The sampling step

Instead of using the random sampling, which is generally
used for large datasets, we use the sampling scheme proposed
in our previous work [2]–[4]. We call this as clusiVAT sam-
pling, which extracts the coarse clusters which describe the
major crowd movement and samples those datapoints which
truly represent the structure of the dataset in the p dimensional
space, where p is the cardinality of each datapoint.

Consider a dataset X = {x1,x2, ...,xN} consisting of N
p-dimensional datapoints where N is large (of the order of
106). The sampling scheme take two more inputs other than
the big dataset X . These are k′, which is an overestimate
of number of clusters in the dataset and n, the number of
samples to find. The first step for sampling is the selection of
k′ distinguished objects which are at a maximum distance from
each other. This step divides the entire dataset into k′ partitions
which (on average) span almost equally sized subspaces of
R

p. The next step in clusiVAT sampling is to randomly select
objects from the k′ partitions to get a total of n samples. The
number of objects selected from each partition is proportional
to the number of datapoints in that partition. These n samples,
which are just a small fraction of N , retain the approximate
geometry of the dataset. The pseudocode for the sampling step
is given in Algorithm 2.

Algorithm 2: clusiVAT sampling [2]–[4]

Input : X = {x1,x2, ...,xN} − N p-dimensional data
points
k′ − cluster number overestimate
n − approximating sample size

Output: Xn − Sampled dataset

Select the indices m of k′ distinguished objects
m1 = 1;y = {dist{x1,x1}, ..., dist{x1,xN}}
for t← 2 to k′ do

y = (min{y1, dist{xmt−1
,x1}}, ...,

min{yN , dist{xmt−1
,xN}})

mt=arg max
1≤j≤N

{yj}

end

Group objects in X = {x1,x2, ...,xN} with their
nearest distinguished objects
S1 = S2 = ... = Sk′ = ∅
for t← 1 to N do

l = arg min
1≤j≤k′

{dist{xmj
,xt}};Sl = Sl ∪ {t}

end

Randomly select data near each distinguished object
to form Xn

for t← 1 to k′ do
nt = 	

n×|St|
N



Draw nt unique random indices S̃t from St

end
S̃ =

⋃k′

t=1
S̃t;Xn = X

S̃

To illustrate the sampling procedure using an example,
consider a 2-dimensional dataset shown in Fig. 1(a). It consists
of k = 10 clusters comprising 1,000,000 points, which are
intermixed with each other and hence difficult to cluster for
any algorithm. In this experiment we use k′ = 20 and n = 100.
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(a) Ground truth scatter plot (Different colors representing different cluster)
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Fig. 1. Distinguished object and random sample selection for clusiVAT sampling

Fig. 1(a) also shows the 20 distinguished objects found using
the clusiVAT sampling algorithm (shown by bold black dots)
and their corresponding partition of the dataset (shown by solid
black lines). View (b) shows 100 randomly chosen samples.

Since the Singapore taxi dataset is quiet dense and have
a lot of datapoints which are quiet close to each other and
consists of a lot of noise points we refrain from using a
single linkage based hierarchical clustering such as VAT [20]
as it is prone to chaining effect and does not produce good
results. Instead we use density based clustering DBSCAN on
the sample datapoints obtained using clusiVAT sampling.

B. Fine-grained clustering

After the sampling step we perform fine grained clustering
on the sample trips using the well known density based clus-
tering algorithm, DBSCAN [5]. It is a locality-based clustering
algorithm which assumes that points inside clusters distribute
randomly but do not require k, the number of clusters. It also
has a notion of noise data and is robust to outliers. DBSCAN
requires two input parameters:

1) Neighbourhood considered as neighbouring region (ε)
2) Minimum number of points required to form a dense

region (minPts)

It starts with an arbitrary starting point, and if its ε-
neighborhood contains atleast minPts points, a cluster is
started. Otherwise, the point is labeled as noise. Note that this
point might later be found in a sufficiently sized ε-environment
of a different point and hence be made part of a cluster. If a
point is declared to belong to a cluster, its ε-neighborhood
is also part of that cluster. This process continues until the
density-connected cluster is completely found.

V. EXPERIMENTS

We perform experiments on large scale Singapore taxi data.
Using the trip extraction algorithm as described in Section
III-B, we extract more than 10 million passenger origin-
destination pairs on which clustering is performed. Each taxi
trip is represented by a pair of GPS coordinates (latitude
and longitude). So each taxi trip xi is represented by a
four dimensional vector xi = {Latoi, Lonoi , Latdi

, Londi
}.

The distance measure between a pair of origin-destination
passenger trips is defined as the sum of distance between ori-
gins and destinations respectively of the trips (in kilometers).

Consider two taxi trips xi = {Latoi, Lonoi , Latdi
, Londi

}
and xj = {Latoj , Lonoj , Latdj

, Londj
}, the distance between

them, Dij is defined as

Dij = Distance({Latoi, Lonoi}, {Latoj , Lonoj})

+Distance({Latdi
, Londi

}, {Latdj
, Londj

}), (1)

where Distance({Latoi, Lonoi}, {Latoj , Lonoj}) is the dis-
tance (in km) between the two GPS points {Latoi, Lonoi} and
{Latoj , Lonoj}.

We perform the clusiVAT sampling step on the dataset
X consisting of N = 10, 000, 000 trips using k′ = 100
and n = 2, 000, which gives us 2, 000 distinct trips which
retain the approximate geometry of entire dataset in a 4-
dimensional space. In the next step we use DBSCAN as the
clustering algorithm using the following parameters: ε = 2 and
MinPts = 7. The DBSCAN parameters were chosen so that
the cluster have reasonable spatial spread so that they represent
a specific locality as origin and destination location and the
number of trips in each luster is also quiet high. After this step
the trips which were not chosen in the clusiVAT sampling step
are assigned to the cluster in which their nearest sampled trip
belongs. Figs. 2 and 3 shows the 24 clusters obtained using
this procedure. The green dots represent the origin and the red
dots represent the destination of the trip.

From the discovered taxi trip clusters we can see that most
of them either start or end in the center south area of Singapore.
This is in accord with common sense, because that area is the
Central Business District (CBD), and a lot of citizens need to
travel to their offices in the morning and back from there in
the evening. It is clearly seen that the counterpart of the city
center in those clusters are all the dense residential areas.

In addition, the clusters also disclose some travel patterns
that do not involve the city center. For example, Cluster 1
shows that many travelers travel from Tampines to Clementi,
both of which are residential areas. This insight may reveal that
the association, in terms of crowd movement between these
two areas is stronger than other residential area pairs. Cluster
12 and 19 shows that many citizens travel from Geylang,
which is a famous place for local dining and entertainment,
to Tampines and Clementi, but not the other way around. That
perhaps because people normally go to Geylang by public
transport, e.g., bus or metro, and prefer taking a taxi home after
dining or entertaining. Cluster 20 shows the crowd movement
from Ang Mo Kio to Tampines. This is probably because there
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Fig. 2. Clusters 1-12 obtained using DBSCAN (Green dots represent trip origin and red dots represents destination)
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(l) Cluster 24

Fig. 3. Clusters 13-24 obtained using DBSCAN (Green dots represent trip origin and red dots represents destination)
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is no convenient public transport from these two areas (the
existing public transport to connect these two places requires
a detour via the city center), and thus many citizens choose to
use taxi.

Overall, the clustering result is validated from our back-
ground knowledge of the Singapore city, and further reveal
some non-obvious insights of the crowd movement (e.g. Clus-
ter 1, 12, 19 and 20). By tuning the parameters, we may find
other clusters which can help to understand the urban mobility
further. This will be our future work.

VI. CONCLUSIONS

In this paper we performed clustering of origin-destination
GPS location of passenger taxi trips of the large scale Singa-
pore taxi data, which consists of the trajectories of 15, 000
taxis collected over a duration of 1 month and have more
than 370 million datapoints. From this dataset we extract more
than 10 million origin-destination taxi trips on which clustering
experiment is performed to understand urban mobility patterns.
We refrain from using the centroid based clustering schemes
as the information about the number of clusters, k and the
general shape of clusters is not known. Since the dataset
is large (more than 10 million trips), we can not apply
hierarchical or density based clustering schemes directly as
they are computationally prohibitive. To solve this problem
we use the clusiVAT sampling scheme proposed in [2]–[4],
which extracts the coarse cluster structure from the dataset
which describe the major crowd movement and samples those
datapoints which truly represent the structure of the dataset.
We next use DBSCAN clustering algorithm on the sampled
trips to extract the clusters and assigned the non sampled trips
of the big dataset to the nearest cluster.

Using the above described procedure we were able to
extract 24 trip clusters from the dataset which are compact
enough to draw meaningful conclusions about the city mobility
patterns, urban hot-spots and road network usage. The number
of trips in each cluster is also large enough to be representative
of the general traffic movement. We validate the clustering
results from our background knowledge of the Singapore city
and further reveal some non-obvious insights of the crowd
movement. In the future we would experiment on fine-tuning
the parameters to obtain clusters which can help to discover
more insights into urban mobility.
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