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†Graduate School of Media and Governance, Keio University
‡Institute for Infocomm Research, A*STAR

¶Department of Electrical and Computer Engineering, University of California, Davis
§School of Information Systems, Singapore Management University

ABSTRACT
We present QueueVadis, a system that addresses the problem of
estimating, in real-time, the properties of queues at commonplace
urban locations, such as coffee shops, taxi stands and movie the-
aters. Abjuring the use of any queuing-specific infrastructure sen-
sors, QueueVadis uses participatory mobile sensing to detect both
(i) the individual-level queuing episodes for any arbitrarily-shaped
queue (by a characteristic locomotive signature of short bursts of
“shuffling forward” between periods of “standing”) and (ii) the
aggregate-level queue properties (such as expected wait or service
times) via appropriate statistical aggregation of multi-person data.
Moreover, for venues where multiple queues are too close to be sep-
arated via location estimates, QueueVadis also uses a novel disam-
biguation technique to separate users into multiple distinct queues.
User studies, performed with 138 cumulative total users observed
at 23 different real-world queues across Singapore and Japan, show
that QueueVadis is able to (a) identify all individual queuing episodes,
(b) predict service and wait times fairly accurately (with median es-
timation errors in the 10%-20% range), independent of the queue’s
shape, (c) separate users in multiple proximate queues with close to
80% accuracy and (d) provide reasonable estimates when the par-
ticipation rate (the fraction of QueueVadis-equipped people in the
queue) is modest.

1. INTRODUCTION
Queuing is one of the more mundane, but frustrating, rites of

daily life in bustling urban centers of Asia (such as Singapore,
Tokyo or Shanghai): we often encounter significant queuing delays
multiple times a day, while having meals in a variety of food and
beverage (F&B) establishments, withdrawing money (at ATMs),
availing of public transport (at bus stops & taxi stands), purchas-
ing groceries (at store checkout counters) and watching movies (at
movie theaters). Clearly, accurate, near real-time estimates of such
individual and aggregated queuing delays, at the tens of thousands
of retail establishments, movie theaters and taxi/bus stands dot-
ting a city, can enable useful new urban applications such as: (a)
Where To Go?, where an office worker searches for the food stall
(among multiple nearby food courts) with the shortest wait time
or (b) Waiting Worth It, where an F&B retailer in a mall pushes

∗ A play on “QuoVadis", Latin for “Where are you going?"
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a specific discount to a queuing customer who has been queuing
longer than 10 minutes. This paper describes QueueVadis, a partic-
ipatory sensing-based system that first uses an individual’s smart-
phone sensors to identify individual queuing episodes. It then uses
the properties of multiple such queuing episodes (from different
individuals) to (a) separate individuals across multiple queues (cur-
rently based on the trajectory trace of entire queuing episodes) and
(b) derive robust estimates of queue properties (specifically the ser-
vice time and the overall waiting time). This participatory paradigm
offers an alternative to infrastructure-based solutions, such as use
of video camera-based analytics [17, 12] or store-specific Wi-Fi
APs [15]). In particular, our experience suggests that deploying
any infrastructure (even if fairly inexpensive), ubiquitously across
hundreds of retail establishments or taxi stands, is extremely hard,
especially for the specific “narrow” problem of queuing-analytics.
In contrast, QueueVadis can be embedded in venue-specific mobile
Apps (that often exist for malls, campuses etc.) to opportunistically
collect individual-level sensor data–we show that QueueVadis pro-
vides useful estimates even with participation rates as low as 10%.

Our key challenges, approaches and contributions are as follows.
A Movement-based Queuing Classifier: To enable identifica-

tion of queuing behavior without any infrastructural aids, we de-
velop a two-tier activity classification model for smartphones that
exploits the repetitive micro activity sequence of queuing, con-
sisting principally of “standing’, interspersed with short bursts of
“stepping forward”. We implement this basic model efficiently on
commodity smartphones; moreover, to monitor individual queuing
behavior with very low energy overhead, we use coarse-grained lo-
cation triggers to activate such classifiers.

Adaptation to Varying Queue Service Times: Based on em-
pirical queue observations, collected at over 39 real-world loca-
tions across two Asian cities (Singapore and Tokyo), we found
that queues exhibit significant variability, in terms of service rate
and overall queuing delay. Moreover, even within a single queue,
there were both short (few minutes) and longer time-scale (hour
of the day) variation in these metrics. To detect queuing accu-
rately and robustly across such variations, the QueueVadis client
employs multiple concurrent tier-2 classifiers (operating at differ-
ent timescales).

Robustness to Human Behavioral Artifacts: Our empirical
measurements also showed two important usage-based artifacts:
queue shape / orientation and premature leaving behavior. We
found that users line up at different queues within a single crowded
venue, such as a food court, in various organic shapes: sometimes
in a straight-line, but often in a randomly curvy and even ‘snaking’
(with 180deg turns) fashion. Moreover, in queues such as at F&B
stores and taxi-stands, users can occasionally leave a queue prema-
turely (often out of impatience). We show that our QueueVadis
client’s orientation-independent technique for classifying behav-
ior achieves robust queuing detection across a variety of real-world
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queue shapes and orientations. Moreover, by utilizing appropriate
statistical filtering of outliers, the QueueVadis server can identify
and eliminate spurious estimates from individuals who depart pre-
maturely.

Handling Low Participatory Rates: A participatory system
such as QueueVadis must deal with the bootstrapping problem, pro-
viding reasonably useful service and wait time estimates even when
the fraction of individuals with “participatory probes” is relatively
low. To achieve this, QueueVadis utilizes a unique approach of ob-
taining multiple service time estimates from the time intervals be-
tween successive “shuffle forward” activities of each participating
individual–the multiplicity of such observations helps QueueVadis
be very resilient to wide variations in the participation rate (the
standard deviation of service time estimates show only a 12.7% in-
crease, when the fraction of queuing individuals with QueueVadis
drops from 100% to 10%).

Multiple Queues in Close Proximity: Across public venues in
Asia, multiple queues occur in very close proximity (e.g, F&B out-
lets in a food court), often separated by less than 1–2 meters. Identi-
fying multiple distinct queues, and separating individuals into these
queues, is a non-trivial challenge indoors, as practical RF-based
techniques (e.g., the Wi-Fi AP based approach in [15]) currently
have location errors of ±4–5 meters [3] or higher. To address this
challenge, QueueVadis utilizes a novel classification technique to
identify the number of distinct queues, and then associates each
queuing individual to his/her corresponding queue. The classifica-
tion combines (i) temporal correlation features to identify phase-
shifted movement behavior among individuals in the same queue,
with (ii) a coarse-grained trajectory matching technique (utilizing
the magnetic compass) to separate out queuing at multiple closely
located queues. Experiments on real-world venues shows a disam-
biguation accuracy of over 70% (for the “Where to Go?” scenario,
where one can use the movement behavior over the entire queuing
episode retrospectively), even at low (20%) participation rates.

Based on extensive testing of QueueVadis across 23 different
real-life queues in Tokyo and Singapore, we show that QueueVadis
is able to infer the duration of individual queuing episodes with a
median error of less than 10% (an estimation error of 1-1.25 min-
utes, given a median wait time of around 10 minutes during peak
hours at F&B outlets) and provide estimates of the service and wait
times with a median error of 10-15% (a median error of approx. 9
secs in detecting the onset of queuing at typical F&B outlets).

2. MOTIVATING SCENARIOS
Queuing is very clearly a significant problem in various places–

note that restaurant wait times in Singapore have been known to
reach 40 minutes or longer [1], while a Tokyo Disneyland attrac-
tion made headlines in 2012 with a 500 minute wait time [2]! We
envision two key use cases that can leverage upon QueueVadis’ au-
tomated detection of queuing behavior:

1 Where To Go?: In this scenario, an office worker looking to
get a quick lunch is trying to decide which of several queues
(at multiple nearby food courts) has the shortest waiting time.
To satisfy this scenario, QueueVadis must estimate the wait
times of all of the queues in the area.

2 Waiting Worth It: In this scenario, a coffee shop in a mall
would like to identify the specific individuals who have been
waiting for longer than 10 minutes, and push them an addi-
tional discount, so as to minimize customer dissatisfaction.

These two scenarios capture the fundamental objectives that drive
the design of QueueVadis. They differ in their accuracy and recency
requirements: (a) Where To Go? will be effective with relatively
coarser ballpark estimates of queue wait times (users are unlikely

to require precise wait-times); (b) Waiting Worth It, on the other
hand, requires more accurate and relatively real-time estimates de-
rived from users currently in the queue. Moreover, Waiting Worth
It also requires the identity of the specific queuing individual–this
is extremely hard to do reliably, in crowded urban spaces, using
infrastructure-based approaches such as video analytics.

3. UNDERSTANDING REAL QUEUES
Before building QueueVadis, we analyze the properties of human-

generated queues, based on extensive observations made in Singa-
pore and Tokyo. We begin with a concise description of the fun-
damental queue properties that we desire to study, followed by an
analysis of queuing at real-world locations, in terms of the varia-
tions observed in those properties and in the orientation/trajectory
of individuals who physically queue at those locations.

3.1 Mathematical Queue Properties
From queuing theory, we identify the following key parameters

of any single queue:

1 Service time ( 1
μ ): The service time is a random variable that

denotes the amount of time taken by the currently-served
customer to complete her transaction.

2 Wait time (Tw): This random variable denotes the total time
taken by a newly arriving customer to complete the desired
transaction — note that it includes the queuing time (Tq) and
the service time. In other words, for any individual customer
i, Tw(i) = Tq(i)+ 1

μ (i).
In addition to these parameters, the dynamics of the queue are gov-
erned by the arrival rate (number of arrivals per second) of cus-
tomers (denoted as λ). In practice, we cannot observe (at least in
a participatory manner), the true arrival rate λ, or the number of
people (Nq) currently in the queue. We now study the variation in
these properties, as observed empirically at a variety of real-world
locations.

3.2 Variations in Real-World Queues
We videotaped the evolution of queues (as well as the movement

patterns of each individual person) at 39 venues across Singapore
and Tokyo (on multiple days, spanning several months), including
5 airport check-in counters, 5 airport boarding areas, 10 F&B lo-
cations, 10 movie ticketing venues, 7 taxi stations, and 2 different
amusement park ride areas. Table 1 shows the different types of
queues we explicitly observed, along with the characteristic func-
tions performed at the respective service counters, as well as the
computed values for: a) the service time statistics (avg, min, max,
stdev) for each type of queue, and b) the duration of the contigu-
ous stepping and standing activities (avg, min, max, stdev) during
queuing activity. (At each queue venue, the stepping and stand-
ing activity durations of at least 50 samples by 10 different people
were measured–e.g., numbers in “Airport check-in” are based on
250 samples from 5 venues.)

3.2.1 Service Times for Different Queuing Types
As may be expected, there is a clearly a wide variation in the av-

erage values of service times ( 1
μ ) across different categories/types

of queues (e.g., movie theater queues move fast, while airport check-
in takes over 1.5 minutes). Even in the same category, two different
queues could have significantly different mean values–e.g., in the
case of the two amusement park queues, one has users stepping
forward (implicitly indicating that a visitor entered the attraction)
once every 8 secs, whereas the other queue shows similar stepping
forward movement every 4 secs. Also, for certain specific queues,
there is a significant variation in the service times (when observed
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People’s Movements in the Queue (s)
Location Queue Type Characteristics Service Interval (s) Stepping Standing

(number of venues) Min. Ave. Max. Stdev. Min. Ave. Max. Stdev. Min. Ave. Max. Stdev.

Singapore Airport check-in (5) V, N, P, Sel 10.7 102.1 421.7 136.9 1.7 5.7 16.0 2.8 2.0 55.3 203.0 42.7

Singapore Airport boarding (5) V, Sec 4.3 7.8 15.6 2.9 0.5 2.9 9.1 1.6 0.7 5.3 14.5 3.0

Singapore Food and beverage (5) P, Sel 10.3 32.9 77.0 17.8 0.6 2.2 4.4 0.9 1.5 20.0 54.6 12.7

Singapore Movie ticketing (5) P, Sel 5.0 7.9 11.5 2.3 1.3 3.4 10.2 1.7 1.2 21.5 42.0 13.6

Singapore Taxi station (2) Sel 9.6 50.8 85.4 27.8 1.2 2.2 3.6 0.7 19.5 46.8 88.6 20.3

Singapore Amusement park ride 1 V N/A N/A N/A N/A 1.0 8.0 30.6 6.0 1.0 7.9 37.5 6.2

Singapore Amusement park ride 2 V N/A N/A N/A N/A 1.0 4.4 21.7 4.0 1.1 53.4 145.0 46.1

Tokyo Food and beverage (5) P, Sel 19.0 51.9 128.2 28.4 1.7 3.1 5.1 0.9 1.7 37.1 132.0 30.1

Tokyo Movie ticketing (5) P, Sel 6.5 23.1 39.9 15.3 1.2 2.4 4.2 1.8 1.1 30.5 67.6 23.3

Tokyo Taxi station (5) Sel 8.6 15.9 47.2 8.5 0.6 2.6 5.1 1.1 1.4 13.3 66.8 11.7

For the Characteristics column, V = Validation (checking of tickets etc.), N = Negotiations (baggage allowance, flight routing
etc.), P = Purchase (exchange of money), Sec = Security (security check of documents, items, etc), and Sel = Selection (picking
specific seats, food products, etc.). N/A = Not Available due to difficulty in observation

Table 1: Taxonomy of Queues

over a multi-day time period)— a classic example is the airport
check-in queue, where the standard deviation in the service time
(136.9 secs) exceeds the average value (102.1 secs).

3.2.2 Temporal Variation in Service Time
We also collected additional longitudinal data at multiple times

(both off-peak and peak periods) on different days, over a 1 week
span, at the beverage stall in the food court of a Singapore-based
university. Figure 1 plots the service time and its standard devia-
tion, experienced by 15 consecutive people queuing, at three dif-
ferent days (Monday, Wednesday & Friday) during the morning
session, whereas Table 2 plots the mean values of service time at
different times on a normal working day. Clearly, even for a spe-
cific queue, the service time is still highly unpredictable even over
shorter timescales. For example, in Figure 1, we observe that the
service time on Monday varied by a factor of 9 (20sec-180sec), and
on Friday by a factor of 7 (20sec-140sec). Moreover, the service
time distribution (and mean) exhibits clear time-of-the-day effects
as well: from Table 2, we observe that service during lunch is much
faster and less variable (mean of 27.6 sec and std. deviation of 9.2
sec), compared to service during breakfast or dinner times.

��
���
���
���
���

����
����
����
����
����
����

�� �� 	� �� 
� �� �� �� �� ��� ��� ��� �	� ��� �
�

��
��

��
��

	�



��
��

��
�

�������������������
���

������ ���������� �������

Figure 1: Service Time Variation (F&B@Uni 9:30-10am)

Time of Day Service Time (secs)
Min Max Mean Std. Dev.

Breakfast (9:30-10am) 15 174 52.5 36.7

Lunch (12:30-1pm) 15 40 27.6 9.2

Dinner (7-7:30pm) 8 97 46.4 25.6

Table 2: Time-of-Day Variations in Service Time

3.2.3 Diversity of Queue Orientations
To understand the behavior of multiple proximate queues, we

empirically recorded, over a period of 1 hour during the busy lunch

period, the evolution of all the queues that formed in the food court
of the university in Singapore. Figure 2 shows a schematic of the
layout of the food court (with the different food stalls arranged
along the periphery and the rectangular island in the center), along
with the orientation/shape of the queues that formed for the dif-
ferent stalls (each stall is roughly 2.5-3 meters wide). The figures
shows that, in dense environments, where the tight layout of ta-
bles and the sheer volume of crowds create some natural barriers to
queuing, the queues evolve in an organic fashion, rather in orderly
straight-lines. In certain cases (e.g., at the ‘Malay’ food stall), the
queue exhibited a horseshoe pattern, doubling back on itself. We
also see that nearby queues exhibit discernibly different queuing
trajectories, an observation that we shall further explore (in Sec-
tion 8) for disambiguating among multiple queues.

Chinese Indian Taiwanese

Food Stalls Seating Direction of Queue

Japanese
Fish

Soup
Western Thai Korean Yong 

Tau Fu
Duck
Rice

Seafood

Malay

Fruits

Dim Sum

Pizza

Drinks

Figure 2: Multiple University Food Court Queues (12:15-1pm)

3.2.4 Queue Joining/Leaving Behavior
We also carefully analyzed the video traces for situations where

an individual either cut-in to the queue (joining at an intermediate
point), or left preemptively (before reaching the end of the queue).
Overall, from the approx. 210 individuals (with an overall ob-
servation duration of over 80 minutes) that we visually analyzed,
we found such incidents to be rare–only 1.46% of the users (i.e.,
3 users) left the queue preemptively, while a similar number (3
users) cut-in to the queue (only at the airport). This suggests that
out of order arrival or departures are uncommon in most “normal”
queues. However, in several cases, we observed the phenomenon of
“group-driven lingering", where individuals would wait at the ser-
vice counter for other members of their group to finish their trans-
actions, before leaving the queuing area together.

4. QUEUEVADIS
This section introduces the QueueVadis system architecture, for

detecting individual queuing episodes and analysis of aggregate
queue properties. We first outline our design goals and then de-
scribe the overall QueueVadis architecture.
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4.1 Design Goals & Assumption
Based on the realization that real-world queues exhibit a lot of

diversity, across multiple attributes, we focused on the following
goals for QueueVadis:

• Supporting In-Service, Physical Queues of Arbitrary Shape:
QueueVadis seeks to monitor and estimate properties of in-
service, physical queues of arbitrary shape, that capture the
majority of queues commonly observed at restaurants, food
courts, movie theaters, supermarkets, taxi stands and similar
venues. We explicitly do not focus on virtual queues (e.g,.
deli-style queues where individuals take a number and then
wait to be called), both because such queues have no distin-
guishing physical movement characteristics, and because the
queue size is directly available from the corresponding in-
frastructural component (e.g., the ticket dispensing machine).

• Adaptation to Varying Service Times: As real world queues
show significant variance in service times, QueueVadis’ clas-
sification logic should be able to accommodate large (at least
two orders of magnitude) variations in 1

μ .

• Disambiguation for Multiple Proximate Queues: The Queue-
Vadis server should be able to identify if two customers are
queuing in the same or different queues, which occur in close
proximity (making them difficult to separate out on the basis
of practical localization technologies).

• Robustness to Variable Participation Rate: QueueVadis’ abil-
ity to provide estimates for queuing and service times should
degrade gracefully, as the set of observed samples (the pro-
portion of queuing customers who use QueueVadis) becomes
smaller. Moreover, the ability to perform queue disambigua-
tion should be robust to changes in the participation rate.

• Minimize Detection Latency: To support scenarios such as
Waiting Worth it, QueueVadis must be able to quickly detect
the onset and the end of a queuing episode, while avoiding
spurious oscillations (between “queuing” and “non-queuing”)
and false positives.

• Resource Efficiency: The QueueVadis client should mini-
mize the energy overheads associated with the sampling and
processing of sensor (accelerometer and magnetic compass)
data, by either modifying the processing pipeline and/or lim-
iting the duration during which such queuing-related sensing
is activated.

• Use No Additional Infrastructure: As stated in the introduc-
tion, one of the key goals of QueueVadis is to explore the pos-
sibility of smartphone-based queue detection. Venue owners
(malls, airports, etc.) can use QueueVadis with their existing
applications (which they are already developing) to obtain
queue detection capabilities without additional infrastruc-
tural investments (and associated feasibility, tendering, in-
stallation, and support costs). However, QueueVadis is com-
plementary to, and thus backward and forward compatible
with, infrastructure-based queue detection solutions.

QueueVadis’ design assumes (but does not mandate) the exis-
tence of an external service that can track a user’s location at coarse-
grained granularity (e.g., with ±8− 10 meter accuracy). This has
been empirically demonstrated to be possible in many public spaces.
Such location monitoring serves as a useful trigger for the Queue-
Vadis client– QueueVadis is triggered only when the user is in the
vicinity of locations where queuing is plausible (e..g, near or at the
food court, near the taxi stand), and is kept dormant when the user
is at other implausible locations (e.g., working inside her office, or
at the gym).

4.2 Architecture of QueueVadis
Figure 3 shows the overall logic-flow in QueueVadis: the sens-

ing on each QueueVadis client is triggered when the user is at cer-
tain relevant locations (using an external location service that we
do not explore further). The output from each QueueVadis client
is then aggregated at the QueueVadis server, which first disam-
biguates users into multiple separate queues (if this is necessary–
i.e., when two nearby queues cannot be distinguished on the basis
of location alone), and then computes the aggregate property of
each queue separately. Figure 4 shows the details of the client and
server components, as explained below.
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Figure 3: Overall Logic Flow of QueueVadis
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Figure 4: Architecture of QueueVadis Server and Client

Client-side: The detection of an individual queuing episode is per-
formed by the QueueVadis client, an application running on an in-
dividual’s mobile device. To support in-service, physical, queues of
arbitrary shapes, we utilize the one common property of all phys-
ical queues–namely, that a user performs a repetitive sequence of
micro (or postural) activities that principally involve “standing” for
a while, interspersed with short bursts of “stepping (shuffling) for-
ward”. The QueueVadis client detects queuing activity by using
sensing data from the accelerometer and then performing real-time
activity recognition (similar to approaches such as [10, 6]). To ac-
commodate the real-world variability in service times at different
venues, QueueVadis utilizes multiple concurrent classifiers, each
tuned to a different service time regime.
Server-side: The server receives the various queuing-related at-
tributes, including the start time (ts) when the individual started
a queuing episode, the end time (te) when the episode was detected
to have ended, and the time instants (ti

s) when the individual shuf-
fled forward in the queue, from multiple QueueVadis clients. In
situations where the coarse location does not readily map to a sin-
gle queue but can be associated with multiple queues (e.g., adjacent
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stalls in a mall’s food court), the server first uses its Disambigua-
tion Engine to separate out and group clients into multiple distinct
queues. The Aggregation Engine then operates on a per-queue ba-
sis. It intelligently combines the attributes from clients that are
part of the same queue to estimate various aggregate properties
about the queue, including the queue’s service time ( 1

μ ) and wait
time (Tw). Finally, these statistics are then disseminated back to the
clients or to external applications (e.g., one that displays queuing
delays at different retail establishments).

In the next two sections, we study the low-level choices for the
queuing activity classification logic and then the overall design and
implementation of the QueueVadis client. Subsequently, in Sec-
tion 7, we will describe and empirically evaluate the server-side
analytics to compute the queue properties (service and wait times),
given reports from QueueVadis clients in that queue, while Sec-
tion 8 will describe how the server’s Disambiguation Engine sepa-
rates people into different queues, if needed.

5. TWO-TIER QUEUING DETECTION
In this section, we investigate the design of the classifier used on

QueueVadis clients to detect queuing events. Following prior work
in hierarchical activity recognition [7, 16], our hierarchical classi-
fier depicted in Figure 4 views queuing as a semantic or High-level
Activity (HA), that is inherently composed of a variable sequence
of low-level or Micro-Activities (MAs), derived from features of
the phone-embedded accelerometer sensor. Let Nm be the number
of distinct MAs (e.g., Nm could be 4 and equal to the set {walking,
stationary, stepping, others}), and Nh be the number of possible
HAs (for example, Nh could be 4 and given by the set {queuing,
dining, browsing, unknown}). The classification process then con-
sists of the following two steps:

1 Lower Layer MA classification: In this layer, the raw 3-
axis accelerometer stream (sampled at f Hz) is first parti-
tioned into a series of non-overlapping frames of relatively
small duration (e.g., 2-5 seconds), denoted by Tf , and fea-
tures computed over the f ∗Tf samples in each frame are used
to classify each frame into one of the Nm labels.

2 Higher Layer HA classification: In this layer, the stream
of MA labels is first partitioned into a set of non-overlapping
windows, each with WQ consecutive MA labels. A set of
high-level features, computed over these WQ elements, is then
used to classify the entire window into one of Nh HA labels.

To utilize this framework, we need to select appropriate values
for the following parameters:

• Tf : The frame duration; intuitively, an overly long Tf could
lead each MA to be mis-classified if the user actually per-
formed multiple MAs within it, whereas an unduly low Tf
could be vulnerable to transient noise (e.g., a slight jerk while
walking).

• WQ: Intuitively, WQ should be just long enough to capture the
characteristic pattern of remaining stationary, followed by a
short period of stepping forward. If WQ is too long, then this
characteristic movement may fail to be distinguished from
other non-queuing behavior (e.g, walking to the coffee shop
before queuing, and then sitting down after queuing); if WQ
is too short, then the characteristic feature may not manifest
itself at all (e.g., if a person moves forward only once every
5 minutes in a queue, then WQ=1 minute may simply show a
sequence of “standing” activities.

• Nm/Nh and the set of MA/HA labels: While a smaller value
of Nm is likely to improve the lower-layer classification accu-
racy by reducing the number of distinct activity labels, it may

also lead to poorer higher-layer classification results caused
by reduced discriminative capabilities between HAs. In this
paper, our focus is solely on queuing-related analytics; ac-
cordingly, we use Nh = 2, given by {queuing, others}, where
“others” captures all non-queuing activities.

5.1 Micro-Benchmarking Study
To select suitable values for Tf , WQ and Nm, we conducted a

micro-benchmark study of using a smartphone accelerometer sen-
sor to infer queuing behavior.

5.1.1 Data Traces & Feature Selection
To perform this study, we recruited 10 participants, who each

carried a smartphone (Samsung Galaxy S III) and performed a va-
riety of MAs and HAs, as described next.
MA Data: Each participant performed a set of 9 pre-established
MAs (each for 120 seconds): namely, (1) walking, (2) stepping, (3)
jumping, (4) jogging, (5) riding bicycle, (6) standing, (7) sitting, (8)
climbing up/down the steps, and (9) going up/down with elevator.
The accelerometer data being recorded (at a frequency f = 50Hz)
by our custom Android application; to filter out initial measurement
noise, we kept only 90 seconds in the middle of each measurement.
HA Data: To collect HA observational data, we asked each partic-
ipant to perform a natural “queuing activity” at 4 venues in Singa-
pore (2 F&B stalls in a food court, and 2 ticketing counters at two
different movie theaters), while carrying two time-synchronized
phones–one with our data collection application and the other with
a timestamping App that the participant used to record the (start,
end) times for each queuing episode. At each venue, we collected
15 queuing episodes, corresponding to 5 samples (one per partici-
pant) for each of 3 on-body phone positions (“back pocket”, “front
pocket”, and “in palm”). Each participant also collected the raw ac-
celerometer data, for approximately 4 hours a day for 4 days as they
went about their daily lives at work (explicitly excluding queuing),
thus providing us additional data corresponding to the HA=others.
Feature Vector for MAs & HAs : Table 3 overviews the fea-
tures used in each tier. For the tier-1 classification of MAs, we
use a set of 22 commonly used time-domain and frequency fea-
tures, widely used for accelerometer-based activity detection. For
the tier-2 HA classification, we extended the duration/frequency-
based classification approach from [16], where the feature vector is
Nm-dimensional, and the ith element consists of the number (count)
of the ith MA label observed in any given HA window (of size WQ).
In addition, we also added a few extra features corresponding to the
(min., max., mean, and variance) of the durations for each of these
vector elements.

Tier-1

Mean (x̄, ȳ, z̄)

Magnitude of Mean (
√

x̄2 + ȳ2 + z̄2)
Time Variance {var(x),var(y),var(z)}
Domain Correlation {corr(x,y),corr(y,z),corr(x,z)}

Covariance {cov(x,y),cov(y,z),cov(x,z)}

Frequency Energy (
∑N

j=1
(m2

j )

N ), mj is FFT component
Domain Entropy (−∑n

j=1(p j ∗ log(p j)), p j is FFT histogram

Tier-2

M : Number of each MA in the frame
Dmin: Minimum duration of each MA in the frame
Dmean: Mean duration of each MA in the frame
Dmax: Maximum duration of each MA in the frame
Dstdev: Standard deviation of the duration of each MA in the frame
C: Number of MA changes in the frame

Table 3: Selected Features Used for Activity Recognition
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5.1.2 Parameters for MA and HA Detection
We experimented with three different sets of MA labels:

1 MA-2, a coarse-grained set of 2 MA labels, consisting of just
{Stationary (sitting, standing) and Moving (all others)}.

2 MA-3, a medium-grained set of 3 MA labels, consisting of
just {Stationary (standing), Moving (stepping, walking), and
Others (all others)}.

3 MA-4, a fine-grained set of 4 MA labels, consisting of the ac-
tivities {Stationary (standing), Stepping, Walking, and Oth-
ers (all others)},

These three choices for MA labels helps us to understand how the
HA classification accuracy would change, given finer or coarser
grained locomotive labels at the lower-tier.

5.1.3 MA & HA Accuracy
Figure 5 shows the MA-level accuracy for the all MA labels, as

a function of the frame length Tf . The results are obtained through
an 100-fold cross validation study performed using the J48 clas-
sifier implemented in Weka[9]. The results show that the classi-
fication accuracy for MA-2 is clearly superior to MA-3 and MA-
4 (as expected), remaining above 97% for all values of Tf . The
classification accuracy for MA-3 and MA-4, on the other hand,
increases as the frame size is increased, reaching approximately
84.1% (MA-3 when Tf = 3secs) and approximately 76.4% (MA-4
when Tf = 3secs) as their peaks.
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Figure 5: MA Detection Accuracy vs. Frame Length

We next plot, in Figure 6, the choice that the MA labels has on
the higher-layer ‘queuing detection’ accuracy vs. the window size
WQ; we use Tf = 3secs, which provided the overall highest MA-
level accuracy in MA detection). Given that different types of real-
world queues have significantly different service times (observed in
Section 3.2.1), we expect that the impact of WQ will be different for
different queue types. Accordingly, the accuracy values are plotted
separately for two different types of queuing venues in Singapore:
F&B & Movie Ticketing). We observe two important characteris-
tics:

a) When we focus on HA classification accuracy, MA-3 and
MA-4 based classification outperform MA-2 (clearly describ-
ing MAs in terms of moving vs. stationary does not help to
separate queuing behavior as strongly), often providing clas-
sification accuracy gains of 10-20%. This motivates us to
choose MA-3 as our preferred set of MA labels in the subse-
quent design and implementation of QueueVadis.

b) The optimal choice of the window size WQ (based on the best
cross validation rate) depends on the category (type) of the
queue, and we clearly see that the accuracy can be poor if WQ
is too small. Intuitively, for queues with larger service times,
WQ must be larger, as the user will exhibit the characteristic
“stepping” movement only over longer time intervals. Even
for the same queuing type, the highest accuracy occurs at
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(a) F&B (b) Ticketing

Figure 6: HA Detection Accuracy vs. Window Size

different values of WQ, due to the short and medium term (as
observed in Figure 1) fluctuations in service times.

5.2 Key Takeaways
Our detailed micro-study of MA and HA classification at multi-

ple queuing venues leads to a few interesting design choices for the
classifier in the QueueVadis’ client:

• Micro-Activity Settings: We choose i) Tf = 3secs, ii) and Nm =
3, given by {Stationary, Moving, Others}, as the most robust
parameter choices for queuing detection.

• Choice of WQ: We realize that there is no unique and optimal
choice for WQ, even for a single queue type, as the service
times can show high variance. Hence, we shall next describe
how the QueueVadis client uses multiple, concurrent layer-2
classifiers, each tuned to a specific WQ.

6. QUEUEVADIS CLIENT
In this section, we describe how the QueueVadis client oper-

ates on a personal mobile device to detect an individual’s queu-
ing episodes. The QueueVadis client operates in three-states, illus-
trated in Figure 7: Detection Initiation (DI) , Concurrent Detection
(CD) and Queuing Termination (QT). In the standard operational
paradigm, QueueVadis starts off in the low-energy DI state (with
the accelerometer sensor and the classifier logic turned off) and
remains there until it receives external “location triggers”, indicat-
ing that the individual may potentially be queuing. At that time,
QueueVadis transitions to the CD state, where it activates the ac-
celerometer sensor and the classifier, so as to detect the onset of a
queuing activity. Once a queuing activity is detected, QueueVadis
transitions to the QT state, where it now instead begins to look for
markers that the ongoing queuing activity has ended, at which point
it transitions back to the DI state.
Detection Initiation (DI): QueueVadis assumes the existence of an
external location tracking system, that triggers the transition to the
CD state, only when an individual’s location suggests that queuing
may be possible. In our experimental system deployed on the SMU
campus, we currently have such a Wi-Fi based location system op-
erationally deployed. As an episode of queuing is highly likely to
occur on or near only certain locations (e.g., the food court on the
campus or at the movieplex), we expect the QueueVadis client to
stay in the low-power DI state for most of the day (e.g., when the
user is working in her office or riding on the bus).
Concurrent Detection (CD): When the individual is at locations
where queuing may be possible, the QueueVadis client activates the
two-tier classifier described previously. One important difference
from past work is that the QueueVadis client activates multiple tier-
2 (HA) classifiers, each with a different value of WQ in parallel, to
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Figure 7: Client Implementation & State Transitions

accommodate the possibly wide variations in 1
μ . More specifically,

the current implementation of the QueueVadis client implements
4 tier-2 classifiers (details of each of the window choices are pro-
vided in Table 4) for each type of queue corresponding to WQ values

of Avg− Std.Dev, Avg, Avg+ Std.Dev and Avg+ 2 ∗ Std.Dev of 1
μ

for that queue type (to capture situations where the service time is
shorter or longer than the average). Moreover, to support multiple
queue types (e.g., F&B, Movie ticketing, Taxi Stand etc.), the clas-
sification engine uses 4 classifiers for each of these types. Each tier-
2 classifier also contains an independent Smoother component that
filters out transient values in the HA output stream (e.g., it outputs
“queuing” only if two consecutive labels of the HA stream indicate
“queuing”.) Most importantly, QueueVadis declares that a person
is queuing if any of the (smoothed) concurrent tier-2 classifiers has
an output of “queuing”, indicating that the user’s movement pattern
matches at least one of the many possible patterns of service times
(ranging from fast to moderate to slow).

Tier-2 Window Size (WQ)
Queue Type avg. - avg. avg. + avg. +

std. dev. std. dev. 2*std. dev.

Airport Check-in 5 20 35 51

Airport Boarding 1 3 4 6

F&B 3 7 12 16

Ticketing 3 18 13 18

Table 4: Concurrent tier-2 Classifiers

Queuing Termination (QT): Careful analysis of our videos of
queuing behavior collected at multiple locations showed that, in
almost all cases, each individual walked continuously away from
the counter having received service. Moreover, the typical “step-
ping duration”, while the customer was waiting in the queue, was
seen to be around 5.7 secs. Accordingly, QueueVadis’ QT logic
detects the end of a queuing episode when 3 consecutive layer-1
frames (corresponding to a duration of 2*Tf (3)= 9 seconds) indi-
cate ‘walking’ as the likely MA. This assures early detection of the
end of a queuing episode, while preventing QT from being falsely
triggered by movements while still in the queue.

6.1 Client Implementation
Our current implementation is written in Java for the Android

4.x platform and implements the overall pipelined, multiple tier-2
classifier design outlined in Figure 7. The application data pro-

cessing pipeline, implemented entirely in memory, is as follows:
(1) retrieval of the raw sensor data, (2) lower-layer feature vector
extraction, (3) MA sequence computation (once every 3 secs) (4)
higher-layer feature vector extraction, followed by (5) higher-layer
HA stream extraction (multiple in parallel). In addition to generat-
ing these labels, the client also computes the start time Ts and end
time Te of each queuing episode, as well as the specific movement
sequence while queuing and transmits it to the QueueVadis server.

6.2 Client Evaluation
We now evaluate the accuracy, latency, and power consumption

of our QueueVadis client.

6.2.1 User Study
To evaluate the performance of the QueueVadis client, we con-

ducted multiple user studies at several real world venues around the
city. We conducted 15 sessions of experiments at 6 different venues
in 2 different countries, as shown in Table 5: 2 sessions (one during
a peak period at noon and another during off-peak afternoon hours)
at an F&B outlet on a Singapore-based university campus, and one
session each from 2 different movie theater ticketing counters. At
the F&B outlet in Singapore, each study session consisted of 10
participants queuing up consecutively to buy a beverage of their
own choice; at the theaters, we had 5 participants queuing up con-
secutively and actually buying a movie ticket at the counter; similar
studies were conducted in Tokyo as well. Besides the QueueVadis
client, each person also carried a second phone (Samsung Galaxy
S III) for sensor data collection and time-stamping.

Country Queue Venue Name Number of Number of
Type Participants Sessions

Singapore F&B University Cafe 10 4

Singapore F&B University Food Court 13 27

Singapore F&B Starbucks 6 2

Singapore Ticketing GV Movie Theater 5 2

Singapore Ticketing Cathay Movie Theater 5 1

Tokyo F&B Starbucks 5 4

Tokyo Ticketing “109” Cinemas 6 3

Table 5: Queue Detection User Studies

6.2.2 Queuing Detection: Accuracy and Latency
We first check: can the QueueVadis client detect an individual’s

queuing activity correctly? To investigate this question, we fed the
entire trace of each individual’s activity trace (i.e., their raw ac-
celerometer stream), consisting of the queuing episodes at the des-
ignated venues through our QueueVadis implementation. We noted
that QueueVadis offered 100% accuracy in queuing detection for
each individual — in other words, QueueVadis was able to cor-
rectly classify all queuing episodes in our user study. Additionally,
when we ran QueueVadis ’s queue detection analysis for approx-
imately 5 hours of Micro Activity accelerometer data traces (not
including queuing activity, collected for other research purpose in
our university), the false positive rate queuing activity detected by
QueueVadis was 16.6%.

Given that QueueVadis can detect the queuing activities correctly,
we next ask: how accurate is QueueVadis in detecting both the start
time (Ts) and the end time (Te) of each queuing episode? To an-
swer this question, we computed the time difference between the
true time & the QueueVadis’ estimates (using multiple concurrent
tier-2 classifiers) of Ts and Te for each individual queuing episode.
We also calculated the overall percentage-error in estimating the
total queuing duration (i.e., Tw = Te −T s).

Table 6 provides the median and standard deviation of these er-
rors (across all the queuing episodes), separately for the F&B and
Movie Ticketing venues. We see that:
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Error F&B Venues Ticketing Venues
Median Std. Dev. Median Std. Dev.

Ts (secs) 9.2 47.1 7.7 100.9

Te (secs) 4.0 92.1 1.5 2.8

Tw (%) 4.8 30.2 4.1 27.6

Table 6: Estimation Err. (Start, End) and Tot. Queuing Times

• The estimation errors for start and end times are typically
very low–less than or equal to 10 secs, indicating that the
CD and DT logic in the QueueVadis client is quite success-
ful in detecting important queuing-related events. However,
the errors in estimating Ts are larger than those for estimat-
ing Te. This is due to the fact that QueueVadis’ QT compo-
nent provides early detection of the end of a queuing episode,
by using 3 consecutive frames (=9 secs) of walking, thereby
bounding this detection latency. On the other hand, Ts re-
quires detection of 2 consecutive windows of activity, and

can be incorrect by, on average, a window size of
WQ
2 frames.

• The overall estimation error for the total queuing duration is
also low–less than 10%. This suggests that the QueueVadis
client is pretty effective in estimating the real queuing delay
experienced by a user. In particular, given that the total wait
time at the F&B venue was approx. 4 minutes (240 secs)
and 10 minutes at Theaters, a 10% estimation error would
translate to errors of less than minute at F&B and 2 minutes
at Theater. We believe that this level of accuracy should be
acceptable for most people in the Where To Go? & Waiting
Worth It scenarios.

It is important to point out that the estimation errors were much
higher (by a factor of at least 5-6) when we experimented with vari-
ants of the QueueVadis client that did not have multiple concurrent
tier-2 classifiers, but instead either used only one classifier or at
most one classifier per queue type.

6.2.3 Energy Consumption
To quantify the potential energy overheads of the QueueVadis

client, we measured its average power consumption (measured over
a test duration of 10 minutes using the Monsoon power monitor[11]
and repeated twice) on a Galaxy SIII phone in 5 typical scenarios–
each with a varying number of concurrent tier-2 (HA) classifiers.
From Figure 8, we see that QueueVadis consumes 29.245 mW when
we only enable its accelerometer sensors, and the energy number
slightly increases to 31.85 mW when both HA and MA classifiers
are running. When QueueVadis runs 16 HA classifiers concur-
rently, it consumes 34.005 mW, indicating that our use of multiple
concurrent classifiers imposes insignificant energy overheads.
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Figure 8: QueueVadis Avg. Power Consumption

Moreover, we also studied the usefulness of relying on coarse
location triggers to selectively activate QueueVadis. We conducted
a user study with 8 participants (5 in Tokyo and 3 in Singapore),

where each participant carried a QueueVadis client-enabled device
for 8 hours during the daytime, and also logged their high-level
location as they went about their daily activities. Assuming that
QueueVadis would be activated whenever the participant approached
a potential queuing location (e.g., food service counters, coffee
shops or automated teller machines), our real-world traces showed
the largest activation duration (among the 8 participants) to be 25
minutes, over the 8 hours. Even assuming a QueueVadis client with
16 concurrent HA classifiers, the corresponding energy consump-
tion is approximately 14.2 milliWatt-hours (mWh), or less than
0.5% of Galaxy S3’s battery capacity (7.98Wh).

7. AGGREGATE PROPERTIES OF A QUEUE
We now focus on the QueueVadis server’s ability to compute the

aggregate properties of a specific queue, based on reports provided
by corresponding QueueVadis clients. More specifically, we are
interested in two key properties of a queue of direct relevance to
our Where To Go? and Waiting Worth It scenarios: (a) the total
wait time Tw that a person is likely to experience and (b) the service
time 1

μ experienced by the customer at the service counter.

7.1 Estimating Service Times
Given our empirical evidence of the variability of service times,

even in a single queue, the QueueVadis server focuses on comput-
ing various statistical properties (such as the mean and variance) of
the random variable 1

μ , as opposed to a single estimate of the ser-

vice time. We have investigated two different algorithms for com-
puting the distribution of the service times of a particular queue:

• Departure-driven Detection Algorithm (DDA): Here, we de-
rive the service times based only on the end time (Te) of each
individual’s queuing episode. In particular, when the QT
component of the QueueVadis client detects the end of an
individual’s queuing episode, it sends the Te estimate to the
QueueVadis server. If the server now receives these values
from two successive individuals (denoted by customers i and
i+ 1), then the service time experienced by the i+ 1th cus-
tomer can be estimated as Te(i+ 1)−Te(i). This approach,
however: a) works only if each successive customer in the
queue has the QueueVadis client; b) assumes that the queue
is never empty, i.e., the service for customer i+ 1 starts im-
mediately after the departure of customer i.

• Activity-centric Detection Algorithm (ADA): This is a more
sophisticated technique, based on the assumption that a queu-
ing individual, say customer i, will typically remain station-
ary in the queue (while the person at the counter is being
served), and will move forward only when the customer be-
ing served leaves, and the person currently at the head of the
queue moves to the service counter. Accordingly, if t1 and
t2 denote the successive times (frames) where the individual
exhibits a new stepping movement (and is thus stationary for
the entire duration (t1, t2)), then, from the perspective of this
individual, the service time can be approximated as t2−t1. In
our proposed algorithm, each QueueVadis client periodically
transmits its set of t2 − t1 values to the QueueVadis server.
On receiving and aggregating such sets of values from multi-
ple clients, the server can then estimate the relevant statistics
for 1

μ . This approach has the advantage of being practical
as it is applicable even when only a subset of the queuing
customers have the QueueVadis client. On the other hand,
as this approach may be sensitive to ‘noise’ in the micro-
activity (movement) pattern (e.g., a queuing customer can
often not move forward each time the queue advances, but
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(a) F&B Peak (Singapore) (b) F&B Off-Peak (Singapore) (c) F&B Peak (Tokyo) (d) Ticketing (Tokyo)

Each bar represents 0th, 25th, 50th, 75th, and 100th percentiles in the distribution from the bottom to the top.

Figure 9: Box Plots of Service Times ( 1
μ ) at 4 Locations: Ground Truth vs. Estimates
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(a) F&B Peak (Singapore) (b) F&B Off-Peak (Singapore) (c) F&B Peak (Tokyo) (d) Ticketing (Tokyo)

Each bar represents 0th, 25th, 50th, 75th, and 100th percentiles in the distribution from the bottom to the top.

Figure 10: Box Plots of Wait Times (Tw) at 4 Locations: Ground Truth vs. Estimates

take multiple steps after several customers have been served),
ADA eliminates outliers, by discarding the bottom and top 5
percentile readings.

7.1.1 Evaluation Results
Figure 9 plots the boxplots of the service times computed in 3

different ways: the video-annotated ground truth and the two al-
gorithms presented in Section 7.1, for the four location/times dis-
cussed before. We see that:

• The DDA algorithm is not very robust, as it often overesti-
mates (and also underestimates) the service time. This error
arises because consumers, in real life, often do not walk away
immediately after receiving service, but instead wait for their
friends to finish purchasing before walking away together.
This leads to an overestimate of their service time (and an
underestimate of the next person’s service time).

• The ADA algorithm, on the other hand, proves to be remark-
ably robust in estimating the distribution of service times,
and in fact, typically provides mean estimates within 5-10
seconds of the ground truth.

Robustness to Low Participation Rates: ADA is particularly at-
tractive as it does not require all queuing participants to have the
QueueVadis system. We studied the statistics of the estimated mean
of the service times computed by ADA vs. the ground truth, when
only a fraction of the queuing individuals were assumed to have
QueueVadis clients. To perform this study, we computed the mean
of the ADA estimates over all possible combinations (correspond-
ing to the specified fraction) of the queuing individuals, and also
computed the variance of this mean estimate. Table 7 plots these
values for an F&B outlet in Singapore, and also demonstrates that
ADA can provide robust estimates in practical situations, where
only a small fraction of the queuing individuals may be expected to
have QueueVadis.

Ground

Truth

Fraction of the Individual with QueueVadis
Truth 100% 80% 60% 40% 20% 10%

Mean (sec) 25.01 21.81 21.54 22.02 22.17 21.24 22.70

Mean Stdev. N/A 11.53 11.21 11.32 11.29 10.34 12.99

Table 7: Service Time ( 1
μ ) vs. fraction of QueueVadis users

7.2 Estimating the Total Wait Time
To estimate the total wait time, we devised the History-Driven

Estimation algorithm (HDA). In HDA, the QueueVadis server re-
ceives the estimated total wait time Tw(i) from the ith customer and
aggregates all these reports from multiple customers. It then com-
putes a weighted “moving average” of these Tw(i) values (giving
greater weightage to recently departing customers) to predict the
wait time likely to be experienced. HDA can possibly suffers from
two drawbacks: (i) as the fraction of customers with QueueVadis
clients decreases, the Tw(i) reports get more sporadic, causing its
accuracy to degrade; (ii) it implicitly assumes that the queue arrival
rate (λ) remains constant. In particular, if there is a sudden surge
in the number of people who’ve joined the queue, HDA will con-
tinue to underestimate the true queuing delay, until these people
complete their transaction and leave the queue.

7.2.1 Evaluation Results
We now study the difference between the true and estimated total

wait times (Tw), based on the HDA method proposed in Section 7.2.
Figure 10 plots the boxplots of the true and estimated wait times
(computed by the HDA technique) for the four venues/locations.
We see that HDA’s estimated wait times tally quite well with the
real wait times in all 4 cases, with errors in the median values being
around 10-15% in all cases. This indicates that our queue estima-
tion technique can prove to be fairly useful to users for both the
Where To Go? and Waiting Worth It scenarios.
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7.3 Robustness to Various Queue Shapes
To quantitatively study how QueueVadis works across different

real-world queue shapes, we classified our 106 queues into 3 classes:
(i) Straight-line, where the users queued in a straight line (e.g., the
Fruits and the Drinks queue in Figure 2); (ii) Snaking, where the
queues had 180◦ turns where the user’s movement got reversed
(e.g., the Malay queue in Figure 2 and 2 movie theater ticketing
queues) and (iii) Arbitrary, where the queues had a more free-form
shape with one or more acute-angled turns (e.g., the Indian and the
Western queue in Figure 2). Figure 11 plots the percentage error in
the wait time estimates Tw (as box plots) for each queue class (with
the number of distinct queues for each class). Since the median es-
timation errors are uniformly low (less than 10%) for all 3 classes,
we posit that QueueVadis works across arbitrary queue shapes.
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Each bar represents 0th, 25th, 50th, 75th, and 100th percentiles
in the distribution from the bottom to the top.

Figure 11: Wait Time Errors (Different Queue Shapes)

7.4 Handling Premature Departures
We also studied QueueVadis’ ability to handle situations where

a user leaves a queue prematurely (even though Section 3.2.4 show
this to be a rare event). 4 users left a queue prematurely (users 1, 2,
3 & 4 leaving when they had 1, 2, 3 & 4 people ahead of them in the
queue, respectively); each user repeated this behavior on 5 different
occasions. Separately, we manually recorded the true Tw value of
the individual immediately in front of the user, as an appropriate
estimate of the Tw that the user would have experienced if she had
completed the service transaction after queuing. Table 8 shows that
the mean Tw values estimated by QueueVadis for each prematurely
departing user gets smaller, expectedly, smaller (compared to Tw
of the person in front who completed queuing), the earlier a user
departs prematurely from the queue.

More importantly, we computed the average Tw (using only ground
truth observations who had completed queuing) to be 183.3 secs,
while the average Tw of the prematurely departing users was much
smaller (149.3 secs). However, after applying QueueVadis’ outlier
elimination logic to all Tw readings (consisting of both ‘completed
queuing’ and ‘prematurely departing’ users), Tw was estimated to
be 160.9 msec (i.e., ∼ 10% lower than the true value), even for
our extreme scenario where half of the queuing instances consisted
of premature departures: this demonstrates our robustness to the
occasional case of an individual leaving a queue mid-stream.

Number of people in front when leaving

1 2 3 4

Average (Tw) 186.6 (218.4) 102.3(152.0) 108.1(175.0) 80.6 (176.8)

Table 8: Wait Time: Premature (vs. Complete Queuing)

8. DISAMBIGUATION ENGINE
The final piece in the QueueVadis puzzle is the Disambiguation

Engine, which detects if two customers are queuing in the same

or different queues (so as to assign an individual’s service or wait
time estimates to the correct queue). The proposed disambiguation
engine combines two orthogonal principles: (i) phase-shifted simi-
larity in the movement patterns between people in the same queue,
and (ii) similarity/differences of directions of movement trajecto-
ries of people in the same/different queues, respectively.

8.1 Cross-Correlation of MA streams
In this approach, we look at the (standing, movement) sequences

of a pair of individuals as two time series and measure their cross-
correlation function. Our intuition is that individuals in the same
queue will exhibit, albeit ideally, time-shifted copies of the same
underlying movement sequence (as everyone will move forward
when the person at the head of the queue gets dequeued). More
specifically, the cross-correlation component of the QueueVadis server’s
disambiguation engine uses the MA-2 set of micro-activity labels,
provided to it by participating QueueVadis clients, as our focus here
is on purely looking for movement similarities (and not on identify-
ing queuing, as that has already been performed by the QueueVadis
client). In particular, given two sequences of such time series, X
and Y , the cross-correlation function is computed as:

cXY (k) =

⎧⎪⎪⎨
⎪⎪⎩

N−k
∑

t=1
XtYt+k k = 0, · · · ,N −1

N
∑

t=1−k
XtYt+k k =−1, · · · ,−(N −1)

(1)

Figure 12 illustrates cross-correlation between two such pairs of
consecutively queuing customers (one pair in the same queue, the
other pair in adjacent but distinct queues) at SMU’s food court–we
can see that (due to the similar phase-shifted movement pattern in
the same queue), the maximum correlation value is much higher
(approx. 0.6) for the same-queue pair, as opposed to the different-
queue pair (approx. 0.35) whose movements are less-synchronized.

Figure 12: Cross-Correlation (Pair in Same vs. Diff. Queue)

Through extensive empirical studies over our datasets, we saw
that a high and unimodal cross-correlation peak always exists for
customers in the same queue, whereas relatively low and multi-
modal peak is often observed for different queue customers. Ac-
cordingly, the disambiguation engine uses two cross-correlation
features over CXY to classify incoming pairs of queuing users: a)
the largest cross-correlation value, denoted by cXY (τ∗)=maxcXY (.);
and b) RXY , the fractional difference between the first and second

peak (denoted as cXY (τ′)) in cXY (.), computed as:
cXY (τ)−cXY (τ′)

cXY (τ′)
.

Table 9 summarizes the classification accuracy achieved using a
Naive Bayes classifier over MA-2 streams collected at 6 different
venues in Singapore (4 food court F&B stalls, 1 movie theater tick-
eting counter, and 1 Starbucks) from 41 real-world queuing indi-
viduals. Results are reported using a 10-fold cross validation study
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over 114 pairs of MA-2 streams (61 pairs in the same queue and
53 in different queues). Note that all the “same queue" training
data are collected from consecutive customers or only one addi-
tional customer between them. Subsequently, to study the effect
of varying the participation rate, we conducted additional studies,
collecting 3 sessions’ data from 10 users queuing in a single queue.
Table 10 plots the accuracy (recall) of such queue disambiguation,
as a function of K, the number of intermediate users between a pair
of queuing individuals. (Specifically, a "0" means that the two indi-
viduals queue consecutively, while "1" means that the individuals
are separately by a single other user). We see that this precision
decreases rapidly with K, falling below 50% when 3 or more peo-
ple separate the pair, reflecting the lack of synchronized movement
(in real world queues) among people who are separated by more
than 2 individuals. Thus, in practice, the correlation classifier pro-
vides a very reliable positive indicator of co-queuing (for users who
queue consecutively or are separated by 1-2 individuals), but can-
not definitively indicate that users are in separate queues.

Predicted Class Accuracy

Same Queue Diff. Queue (%)

Class
Same Queue 47 14 77.04

Diff. Queue 3 50 93.34

Table 9: Confusion Matrix of the Naive Bayes Model

No. of Intermed. People (K) 0 1 2 3 4

Classification Accuracy 0.83 0.73 0.55 0.34 0.21

Table 10: Same-Queue Classification Accuracy vs. K

8.2 Direction of In-Queue Movement
To bolster the queue disambiguation accuracy, we investigate

an alternative feature–the trajectory, or sequence of directions, in
which a user moves while queuing. This method is motivated by
Figure 2, which suggests that, in the real-world, different queues in
the same space have distinct trajectories. In this approach, we thus
utilize the smartphone-embedded magnetic compass sensor to ob-
serve the directional component of an individual user’s trajectory
during those frames that are classified (using the MA-3 classifier)
as “step” (a probably reliable indicator of the direction of a user’s
‘shuffle forward’ in-queue movement). Moreover, to accommodate
the noise in the compass data, we quantize the readings into ‘45
deg’ octants–an individual’s sequence of movements is then rep-
resented as a sequence of values D = [d1,d2, . . . , ], where the ith

element indicates the directionality of the ith stepping activity, with
di ∈ {1, . . . ,8},∀i. We further convert each sequence D into a vec-
tor S = [s1,s2, . . . ,s8], where the 8 elements represent the fraction
of each direction’s movement count. Figure 13 illustrates this quan-
tized representation of the trajectory of two queuing individuals.

Figure 13: Movement-Orientation Based Similarity Measures
The similarity in the trajectory of a pair of individuals i and j is

then expressed via the similarity between S( j) and S(k) (using the

dot product of S( j) and S(k)). Table 11 lists the same queue clas-
sification accuracy using the Direction of In-Queue Movement ap-
proach, computed by varying the percentage of QueueVadis-equipped
users (average of all combinations). Table 12 summarizes the clas-
sification accuracy achieved by combining the Cross-Correlation
approach and the Direction of In-Queue Movement approach. Note
1: the “same queue” training data is collected from the customers
who have a variable number of intermediate people between them.
Note 2: the disambiguation accuracies reported here use the trajec-
tory of the entire queuing episode (which can last several minutes).
Hence, this approach cannot directly address the “Waiting Worth
It” scenario, where the disambiguation must be performed imme-
diately after the queuing onset: this issue remains an open problem.

Frac. of People with QueueVadis 100% 80% 60% 40% 20%

Classification Accuracy 0.78 0.74 0.71 0.63 0.60

Table 11: Same-Queue Classification Accuracy (Compass-
based) vs. Participation Rate

Predicted Class Accuracy

Same Queue Diff. Queue (%)

Class
Same Queue 72 28 72

Diff. Queue 17 42 73.7

Table 12: Confusion Matrix of the Two Approaches Combined

9. DISCUSSION
While QueueVadis performs reasonably, across a variety of queues

(of different types, and with different shapes) even in dense urban
spaces (e.g., foodcourts in malls or university campuses), there are
several issues that QueueVadis can tackle in the future:

• We have not considered queues that are dynamically reconfigured–
e.g., at airport security, the opening of a lane can make peo-
ple in an existing queue walk briskly for up to 15 seconds.
This brisk walking motion will confuse QueueVadis’ activity
detection mechanisms.

• We have also not evaluated QueueVadis in scenarios with
group or herding dynamics. A bus stop offers an example
of such a queue, where a tour group might board a bus to-
gether (and thus exit the queue almost simultaneously).

• In our experiments, we observed that individuals usually had
their smartphone inside their pockets or held it in their hands.
It is possible that users may use their smartphone more ac-
tively (e.g., Tweeting their friends) and habitually while queu-
ing, thereby reducing the activity classification accuracy. How-
ever, such usage may also offer opportunities for finer-grained
sensing–e.g., provide more accurate compass-based direc-
tional estimates when the phone is being used.

10. RELATED WORK
Mobile Sensing & Activity Recognition: Approaches such as
CenceMe [10], Jigsaw [8] and Escort [6] have applied feature-
based classification on mobile phone accelerometer data to clas-
sify everyday locomotive activities (such as sitting, standing and
walking). Hierarchical activity models have been used, in both su-
pervised and unsupervised learning based approaches, to recognize
semantic Activities of Daily Living (ADLs), from underlying loco-
motive and gestural signatures-e.g., Huynh et. al [7] used LDA-
based topic models to discover common recurring MA patterns for
different ADLs. QueueVadis’ two-tier classification model is bor-
rowed from the SAMMPLE framework [16], which classified HAs
in home and office environments.
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Mobile Sensing-based Queue Detection: LineKing [4] was one
of the first smartphone systems to detect human waiting behavior
& wait times in specific places such as a coffee shop. It used wait
times as a proxy for queuing delay (assuming that all people in
the coffee shop are queuing by default). The more-recent Queue-
Sense approach [13] adopts a participatory mechanism similar to
ours: it identifies relationships among multiple queuing individu-
als, using accelerometer and compass sensor data. One of the ma-
jor design differences is that QueueSense’s individual queuing ac-
tivity recognition relies on collaborative exchanges with neighbor-
ing nodes via Bluetooth, whereas a QueueVadis client simply relies
on its own sensor data. Like QueueVadis, QueueSense also modi-
fied the classification interval for different queue types. In general,
QueueVadis’ evaluation tackled several additional real-world arti-
facts, such as low participation rates, multiple close-range queues,
highly variable queuing delays and premature user departures. More
recently, Wang et. al [15] used the signal strength evolution of a Wi-
Fi AP to deduce the in-queue movement behavior of an individual,
and thus infer individual queuing delays. This infrastructure-based
approach did not, however, investigate the challenge of multiple
distinct queues in close proximity.
Other Queue Estimation Systems: Video analytics has been used
to infer queue lengths and wait times (e.g., [5, 14]) at fixed, well-
known locations (such as a stadium entrance). However, these sys-
tems are hard to deploy ubiquitously.

11. CONCLUSION
In this paper, we presented QueueVadis, a two-tier energy-efficient

queue detection system that can provide both the aggregate-level
and the individual-level queue properties (even when multiple queues
are too close to be distinguished purely by location) using just cell-
phone sensor data. We implemented and tested QueueVadis with
different types of real-world queues; our results show that Queue-
Vadis provides practically useful estimates of the current wait and
service times with a relatively small median error. In particular,
for F&B venues, we found that the estimation error for total wait
times is 1 minute (making a scenario such as “Where To Go?” fea-
sible); moreover, the start time of a queuing episode is estimated
with a median error less than 10 seconds (making services such as
“Waiting Worth It” feasible, when the users are already associated
unambiguously to a single queue).
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