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Automatic short answer grading by encoding student
responses via a graph convolutional network
Hongye Tan a, Chong Wang a, Qinglong Duanb, Yu Lu b, Hu Zhanga and Ru Lia

aSchool of Computer and Information Technology, Shanxi University, Taiyuan, People’s Republic of China;
bAdvanced Innovation Centre for Future Education, Beijing Normal University, Beijing, People’s Republic of China

ABSTRACT
Automatic short answer grading (ASAG) is a challenging task that aims to
predict a score for a given student response. Previous works on ASAG
mainly use nonneural or neural methods. However, the former depends
on handcrafted features and is limited by its inflexibility and high cost,
and the latter ignores global word cooccurrence in a corpus and global
interaction among the samples in datasets. However, ASAG requires this
global information to learn the different expressions conveying the
same meaning and the relations between the expressions and the
grading labels. To address these limitations, we explore the use of a
two-layer graph convolutional network (GCN) to encode the undirected
heterogeneous graph of all student responses. The graph has sentence-
level and word/bigram-level nodes. An edge is constructed between
two nodes according to their inclusion or cooccurrence relationship.
The sentence-level TF-IDF value or the PMI value is calculated as the
edge weights to reflect the correlation degree between two nodes.
Experimental results on the SemEval-2013 benchmark dataset and a
two-subject dataset show that our model performs better.
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1. Introduction

Compared with multiple-choice questions or yes/no questions, short-answer questions can activate
the more complicated reconstructive cognitive process and further promote student learning.
However, short-answer questions are less utilized in large-scale education environments due to
the relatively low accuracy of automatic short answer grading (ASAG), which aims to predict a
score for a given student response.

Most existing methods regard ASAG as a classification or regression task. Some methods build
models based on human-designed features (Mohler et al., 2011; Sultan et al., 2016; 2008); others
utilize deep learning methods such as convolution neural networks (CNNs) and long short-term
memory networks (LSTMs) to learn the representation of student responses and to avoid designing
features manually (Alikaniotis et al., 2016; Hassan et al., 2018; Huang et al., 2018; Kumar et al., 2017;
Riordan et al., 2017; Yang et al., 2018). However, these deep learning models can capture semantic
and grammatical information in local consecutive word sequences but may ignore global word cooc-
currence in a corpus (Peng et al., 2018).

Currently, the main challenge of ASAG is that reference answers and the limited training datasets
cannot cover all the expressions appearing in student responses, leading to incorrect predictions in
ASAG systems. In the student responses in Table 1, the distinct words of “dried up” and “evapor-
ated” (in Example 1) and the different grammatical forms of “B if A” and “A B” (in Example 2) are
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used to convey the same meaning. To make correct predictions, the system needs to know “dried
up” and “evaporated” have the same meaning in this context, and the two grammatical structures
of “B if A” and “A B” are paraphrases of each other.

We propose that if ASAG models can consider the global word cooccurrence and global inter-
action among student responses, they can capture the relations between the various expressions
and the grading labels. Additionally, we believe that the general syntax knowledge, such as “B if
A” and “A B” are equivalent, can be learned from examples in different domains, as long as they
include similar syntax structures.

Recently, some researchers have used the GCNs (graph convolutional networks) in many
natural language processing (NLP) tasks and attained excellent effects (Marcheggiani & Titov,
2017; Sahu et al., 2019; Zhang et al., 2018). The reason is that the GCNs utilize graph embed-
ding to preserve the global graph structure information and realize message passing within a
graph.

Inspired by these works, we explore the use of the GCNs for ASAG. We construct an undirected
heterogeneous graph and utilize the GCN model to encode the graph and predict grades. The graph
has two types of nodes to capture the content information of responses. One type is sentence-level
nodes, corresponding to reference answers, human-scored responses, and the student responses to
be scored. The other type is word/bigram-level nodes, corresponding to the words and bigrams
existing in answers and responses. The graph uses edges to capture the relations among the
responses. Two nodes are connected by an edge according to their inclusion or cooccurrence
relationships. The edge weight is calculated as the sentence-level TF-IDF (term frequency–inverse
document frequency) value or the PMI (pointwise mutual information) value, reflecting the corre-
lation degree between the nodes. Since the graph involves all student responses in the dataset,
the GCN model captures the global word cooccurrence and global interaction among the student
responses via graph embedding.

Additionally, to avoid overfitting problems caused by the size limitation of datasets, we augment
the data by applying the method of back translation, which is an effective practice in data augmen-
tation because it can obtain new data that are greatly different from the original data and improve
the model performance.

This work thus makes the following key contributions:

(1) We explicitly identify the limitation of the existing ASAGmodels, and first propose to capture the
missing global information from the student responses by leveraging on the graph convolu-
tional network.

(2) We propose a novel two-layer GCN that models the global word co-occurrence and global inter-
action among students’ responses to properly handle diverse student answers.

Table 1. Examples from the SemEval2013 Dataset.

Example1 Question: How did you separate the salt from the water?
Ref. Answer: The water was evaporated, leaving the salt.
Correct std. responses:

(1) Evaporated and left kind of salt.
(2) The water dried up and left the salt.

Example2 Question: Andi and Scott decided to investigate solar water heaters… …What does the graph tell you about the
effect of using a cover?

Ref. Answer: Water heats up faster when covered.
Correct std. responses:

(1) Covered it heats up faster. (syntax form: A B)
(2) Water heats up faster if the lid is covered (syntax form: B if A)
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(3) Using the student data from two datasets, we have conducted the comprehensive evaluations
and the results show that the proposed model outperforms the baselines, where the data argu-
ment technique is utilized to avoid overfitting.

The remainder of this article is organized as follows: We first review the related work of ASAG.
Then, we illustrate our model based on the GCNs and validate the model on two datasets. Last,
we present the discussion and our conclusions.

2. Related work

2.1. ASAG

The studyof ASAGbegan in 1966 (Page, 1966), and early ASAGworksmostly used rule-basedmethods.
For example, (Bachman et al., 2002) utilized reference answers to generate regular expression rules,
andeach rule corresponds to a score. (Mitchell et al., 2003) proposed the IATmodel, inwhich templates
were manually created for both correct answers and wrong answers. However, rule-based methods
have low generalizability and scalability due to the rules’ limited expressions.

With the development of machine learning, researchers have begun to predict scores with textual
classification or regression models. Most traditional machine learning methods focus on extracting
various features from human-scored responses to construct models. For example, (Sultan et al., 2016)
proposed an ASAG system with the features of text similarities, term weights and length ratios.
(Mohler et al., 2011) utilized graph alignment and lexical semantic similarity features for scoring.
(Bailey & Meurers, 2008) built the CAM content evaluation module with 13 kinds of features, such
as word-level and phrase-level features. To use different subsets of features, (Heilman & Madnani,
2013) adopted ensembles of classifiers. These traditional machine learning approaches generally
depend on handcrafted features and are limited by their inflexibility and high costs.

Driven by recent advances in deep learning, researchers have also begun to use word vectors and
deep neural networks for ASAG. (Alikaniotis et al., 2016) proposed a model that forms word represen-
tations by learning the extent towhich specificwords contribute to the text’s score and used LSTMs to
represent the meaning of texts. (Hassan et al., 2018) presented a supervised learning approach for
ASAG based on paragraph embeddings. (Kumar et al., 2017) built a neural framework for ASAG with
three layers: the Siamese bi-LSTM layer, the Earth mover’s distance pooling layer and the regression
layer. (Riordanet al., 2017) appliedCNNsand LSTMs for ASAG. (Yanget al., 2018) proposed adeepauto-
encoder grader (DAGrader) for scoring. (Huang et al., 2018) combined the continuous bag-of-words
model (CBOW) with the LSTMs to predict scores. However, most existing ASAG works neglect global
word cooccurrence in the dataset and do not model global interaction among student responses.

2.2. Graph neural networks

The graph neural networks (GNNs) were first proposed by (Scarselli et al., 2009) and extend existing
neural networks for processing the data represented in graph domains. However, the original GNN
is oriented to the simplest graph, consisting of nodes with label information and undirected edges
(Zhou et al., 2019). Later, some GNN variants were designed to model different kinds of graphs
(such as directed graphs and heterogeneous graphs), and extended the representation capability
of the original model to solve many problems in different fields. For example, convolution oper-
ators were extended from traditional signal processing to graphs (Ortega et al., 2018; Shuman
et al., 2013). Several definitions of the frequency representation of the graphic signal were pro-
posed based on spectral theory and wavelet theory (Bruna et al., 2013; Hammond et al., 2011).
The GNNs effectiveness of message-passing in quantum chemistry was also studied by (Gilmer
et al., 2017). (Garcia & Bruna, 2017) showed how to use GNNs to learn classifiers on image datasets
in a few-shot manner.

INTERACTIVE LEARNING ENVIRONMENTS 3



The GCN is a variant of GNNs and was proposed by (Kipf & Welling, 2017), who used GCNs for
classification on citation networks and knowledge graph datasets. The GCN limits the layer wise con-
volution operation to alleviate the overfitting problem on local neighbourhood structures for graphs
and scales linearly in the number of graph edges and learns hidden layer representations that encode
both local graph structure and features of nodes. Later, the GCNwas used for more NLP tasks. (March-
eggiani & Titov, 2017) proposed a syntactic GCN for semantic role labelling, operating on the depen-
dency graph and learn latent feature representations. (Zhang et al., 2018) proposed an extension of
GCN for intra-sentence relation extraction by encoding dependency trees. (Sahu et al., 2019) built a
labelled-edge GCNmodel on a document-level graph using various inter- and intra-sentence depen-
dencies to capture local and nonlocal dependency information for inter-sentence relation extraction.
(Yao et al., 2019) built a text graph for a corpus based on word co-occurrence and document-word
relations and learn the TextGCNmodel for text classification. Our work is inspired by (Yao et al., 2019),
but different from theirs in these aspects: (1) We focus on the ASAG task, in which student responses
are often short and require fine-grained semantic analysis for classification, while they aim at long
text classification. (2) Apart from word nodes, we introduce bigram nodes to use word order infor-
mation, which are important for ASAG because short-answer questions often examine the relations
between two concepts. (3) We calculate the PMI value as the edge weight within a response because
student responses are short, while they calculate it in a sliding window.

3. Methodology

We formulate the ASAG task as a classification problem: given the reference answer r and the student
response s, the learned model predicts the best grade label g∗that maximizes the conditional like-
lihood as Equation (1):

g∗ = argmax P(g|r, s) (1)

The procedure of the ASAG system based on the GCN can be divided into these steps: graph build-
ing, graph representation and grade prediction. First, we construct an undirected heterogeneous
text graph with the sentence-level nodes, the word/bigram-level nodes and the edges between
nodes. Then, we use a two-layer GCN model to encode the graph structure and obtain the graph
representation, aggregating the content information and global interaction information of
student responses and realizing message passing via their neighbouring nodes. Finally, based on
the graph representation, the scores of the responses are predicted. Our model architecture is
shown in Figure 1.

Figure 1. The architecture of the ASAG model.
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3.1. Graph building

Generally, an ASAG system needs to recognize good responses from other responses, so it’s necess-
ary to model the features of good responses. Good responses usually have these features (Madnani
et al., 2017): (1) they contain the correct concepts; and (2) the concepts’ syntactic relations are
correct; and (3) they may have different expressions to deliver the same meaning because of the
nature of natural language. To capture these features, we construct a text graph, which contains
the following nodes and edges, as shown with different colours in Figure 2.

Sentence-level nodes: These nodes involve the following sentence-form objects: the reference
answers, the human-scored student responses and the student responses to be scored.

Word/bigram-level nodes: These nodes correspond to words and bigrams appearing in refer-
ence answers and student responses, and obtain the content information of student responses.
Specifically, words reflect the concepts contained in the responses, and bigrams approximately
capture the concepts expressed by two successive words, which reflect the syntactic relations
between two concepts to some extent.

Sentence-word/bigram edges: This type of edge is used to connect a sentence-level node with a
word/bigram-level node if the sentence contains the word/bigram. The edge weight is the sentence-
basedTF-IDF valueof theword/bigramw, calculatedby taking a sentence as adocument, shownas Eq. (2):

tf − idf (w) = Nw

NWt
log

Ns

Nsw
(2)

where Nw is the number ofw occurring in sentence S, NWtis the total number of the words in S, Ns is the
total number of the sentences in the dataset, and Nsw is the number of the sentences containingw in the

Figure 2. The constructed graph. Yellow nodes indicate word/bigram-level nodes, and nodes of other colours are sentence-level
nodes (blue nodes represent incorrect responses, red nodes represent correct responses, and colourless nodes indicate the
responses to be scored). A solid black line indicates the edge between a word/bigram-level node and a sentence-level node.
A yellow dotted line indicates the edges between two word/bigram-level nodes.
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dataset. The content information of a response is captured via the sentence-word/bigram edges and the
TF-IDF weights. The grading label information of human-scored responses can be passed via these con-
nected nodes.

Word/bigram-word/bigram edges: To capture the relations among the constituents of
responses, we connect two word/bigram nodes if the corresponding two words’ (or bigrams’) cooc-
currence weight is large enough. Specifically, the weight is the PMI value between the two words wi

and wj, calculated as Eq. (3)

PMI(wi, wj) = log
P(wi, wj)
P(wi)P(wj)

(3)

where P(wi, wj) indicates the probability of both wiand wjappearing in a student response. P(wi) is
the probability of wi appearing in a response. When the PMI value is positive (negative), the rel-
evance of the two words is high (low). Here, we only built the edges between the two word/
bigram nodes whose PMI value is positive.

3.2. Graph representation

Following the above idea, we construct a graph G = (V, E), where V and E are sets of nodes and
edges. Let X [ Rn×m be a matrix containing all nodes with their features, where n is the number
of nodes, and m is the dimension of the feature vectors.

We encode the graph by applying the GCN proposed by (Kipf & Welling, 2017) to obtain the graph
representation. The GCN is an efficient variant of CNNs. It operates directly on graphs to learn the
semantic representation for the graph nodes, and updates the graph representation by information
propagation between nodes while preserving the graph structural information. The layer wise
propagation rule is shown as Eq. (4) and Eq. (5):

H(l+1) = s(ÃH(l)W(l)) (4)

Ã = D
−
1
2AD

−
1
2 (5)

where H(l)is the matrix of hidden states in the l-th layer of the neural network.W(l)is the layerwise
weight matrix, and s( · ) is the activation function. Ã is the normalized adjacent matrix, A is the sym-
metric adjacent matrix of G, and D is its degree matrix with Dii =

∑
j
Ãij. H(0) = X is the input vector.

3.3. Grade prediction

A multiple GCN layer can be stacked to obtain the representation of node v, which accumulates
information from distant neighbouring nodes and capture high-order relations in the graph. It
can be used for predicting the grading label. In our implementation, we use a two-layer GCN for
ASAG. As shown in Figure 1, through the GCN model, the graph structure is preserved, and the rep-
resentation of every node aggregates various information, including the content information, the
label information and the interaction information from its first-order and second-order neighbours.
The model adopts the hidden representation to predict grade labels with the form shown as Eq. (6):

p = softmax(Ã ReLU (ÃXW(0))W(1)) (6)

where X is the input matrix, W(0) is the input-to-hidden weight matrix, W(1)is the hidden-to-output
weight matrix, and ReLU (·) is the activation function. The softmax function classifies the output
of the GCN, defined as Eq. (7):

softmax(xi) = exp(xi)∑
i exp(xi)

(7)
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where xi [ Rn corresponds to the representation of a node. Here, similar to (Yao et al., 2019), we
simply set X = I, indicating that every word or sentence is represented as a one-hot vector to
input to the model.

We use the cross-entropy loss as the classification training loss:

L = −
∑l

i=1

gi · log (ĝi) (8)

where giis the ground-truth grade label distribution, ĝi is the predicted grade label distribution and l
is the number of grades.

4. Experimental settings

4.1. Datasets

We conduct experiments on two datasets.
SemEval-2013 Dataset. This benchmarking dataset was released as part of the SemEval-2013

Shared Task 7 (Dzikovska et al., 2013). It includes two subsets: Beetle and SciEntsBank. In this
paper, we use SciEntsBank, which contains the approximately 10,000 student responses to 197 ques-
tions from 15 different science domains. The dataset has 3 versions of 2-way, 3-way and 5-way
classifications. The labels of the 2-way classification are “correct” and “incorrect”, those of the 3-
way classification are “correct”, “incorrect” and “contradictory”, and the 5-way classification labels
are “correct”, “partially correct/incomplete”, “contradictory”, “irrelevant” and “not in the
domain”. The dataset has three distinct test sets: (1) unseen answers (UA) (9%), including the
responses to questions contained in the training set; (2) unseen questions (UQ) (13%), containing
the responses to previously unseen questions but still in the domains presented in the training
set; and (3) unseen domain (UD) (78%), including the responses to topics unseen in the training
set. Texts in SciEntsBank are in English.

Two-subject Dataset. This dataset includes the questions for junior school students in China, and
all texts in the dataset are in Chinese. It has two subsets. One is the math dataset with four math-
ematical questions to assess students’ understanding of mathematical definitions and theorems.
The other is the literature dataset with four literature reading comprehension questions. The
student responses in the training set are scored by two independent teachers, and their consistency
is evaluated by QWKappa (Cohen’s kappa with quadratic weight). The average QWKappa value is
0.963, showing that the annotation consistency is strong.

Table 2 shows the details about the datasets.

4.2. Data augmentation

Generally, small datasets are not sufficient to train a complex deep learning model and will cause
overfitting problems. Data augmentation is a technique to avoid overfitting by generating more
training samples or adding data noise. The common methods of data augmentation in NLP are
random transformations such as swapping two words, dropping words and replacing words with
their synonyms. However, these methods may cause significant semantic changes. Back translation

Table 2. Experimental datasets

Dataset Responses Train Test

SemEval-2013 dataset 10804 4969
UA UQ UD
540 733 4562

Math Dataset 17248 13798 3450
Literature Dataset 10104 8083 2021

INTERACTIVE LEARNING ENVIRONMENTS 7



from the target language to the source is another common practice in data augmentation, which is
effective if a good back translation model can be obtained. Due to the different logical orders of
language, back translation can often obtain new data considerably different from the original
data (Xie et al., 2020).

We applied the method of back translation for data augmentation because our datasets are in
English or in Chinese, which are not low-resource languages, and machine translation systems
between Chinese and English perform well.

4.3. Baselines

We compare our system with the following models:
SEMILAR. SEMILAR is a semantic similarity tool, widely used in many NLP tasks, such as para-

phrase recognition, question answering, and ASAG (Rus et al., 2013).
Sultan’s System. It is a fast, simple and high-performance ASAG system, trained using a random

forest classifier with 500 trees (Sultan et al., 2016).
ETS.Oneof thebest systems in theSemEval-2013 task. It uses stackinganddomainadaptation tech-

niquestointegrate item-specificn-gramfeaturesandmoregeneral features (Heilman&Madnani,2013).
Saha’s System. It combines some token-level features with sentence embedding-based features

and improves ASAG performance (Saha et al., 2018).
SOFTCAR. It’s based on text overlap through soft cardinality and a new mechanism for weight

propagation, and performs particularly well in the SemEval-2013 task (Jimenez et al., 2013).
CNN + LSTM. CNNs and LSTMs have achieved state-of-the-art results on many NLP tasks. We

adopt the model combining CNNs and LSTMs since they have different architectures. LSTMs are
sequential, while CNNs are hierarchical for data processing, resulting in crucial complementary infor-
mation for each other (Yin et al., 2017).

BERT. Bert has achieved outstanding results on many NLP tasks. It realizes the dynamic vector
representations for a word based on its context, by utilizing the transformer architecture and self-
attention mechanisms (Devlin et al., 2019).

4.4. Experimental settings

Settings for Neural Networks and Baselines. The experimental models of LSTM, CNN, and GCN are
all implemented based on TensorFlow framework. In all experiments, the mini-batch value is 32, the
dropout is 0.5, and the learning rate is 0.001. The loss function is the cross-entropy loss function, and
the optimizer is the Adam optimizer. The word vectors used in LSTM and CNN are obtained with the
word2vec tool in the GenSim toolkit, and the dimension is set to 300. We randomly select 10% of the
training set as the verification set. If the verification loss is not reduced by 20 consecutive epochs,
then the training is stopped.

For the BERT baseline, we chose BERTBASE (an uncased pretrained model) for the experiments on
the English datasets. We use the Chinese pretrained BERT (https://github.com/google-research/bert)
model for the experiments on the Chinese datasets.

For the results on the SemEval-2013 Dataset, we directly report the performances of Sultan’s
System, ETS, Saha’s System and SOFTCAR in the corresponding paper. The baselines of SEMILAR
and Sultan’s System provide source code, so we use their parameter settings and provide the
results on the entire three test sets of UA, UQ and UD, and the two-subject dataset.

Key Concepts. To strengthen the concepts that the questions aim to examine, we built a small
vocabulary including the concept words contained in the correct responses. If an edge involves
these concepts, we increase the corresponding weights by a certain multiple, defined by a hyper-
parameter. Here, the hyperparameter is set to 1.25 after many tests.

Some tools. For experiments on the two-subject dataset, we use the Jieba Chinese word segmen-
tation tool to segment the student responses and the reference answers. We conduct back

8 H. TAN ET AL.
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translation for data augmentation by using the Youdao translator, a popular translation system in
China. In this way, the final datasets we obtained are twice as large as the original datasets.

5. Results

In all experiments, we employ accuracy (Acc), macro-average F1 (M-F1) and weighted-F1 (W-F1) as
evaluation metrics. Two variants of our model are provided: “Our GCN Model” and “Our GCN-DA
Model”. Both are based on the two-layer GCN, but the latter uses back translation-based data
augmentation.

The results on the SemEval-2013 Dataset are shown in Table 3, where the column “All” indicates
the results on all the test sets, including UA, UQ and UD. Figure 3 shows the results on the two-
subject dataset, a similar scenario to the UA test set.

From Table 3 and Figure 3, we see that our GCN-DA model achieves quite good results in most
cases. On the UD test set, it obtains the best performance for all metrics on the 2-way and 5-way tasks
and achieves comparable results on the 3-way task. On the “All” test set, our model outperforms
other baselines for all metrics. On the math dataset, Our GCN-DA model also outperforms all base-
lines. We also observe that BERT performs well in most cases, showing the effectiveness of the
dynamic word vector representations based on the contexts.

Table 3. Experimental results on SemEval-2013 datasets.

(a) 2-way
UD All

Model Acc M-F1 W-F1 Acc M-F1 W-F1

SEMILAR 71.1 70.5 67.7 54.6 38.8 52.2
Sultan’s System 71.3 70.4 71.2 63.2 62.5 62.8
ETS 62.3 54.3 57.4 — — —
Saha’s System 72.0 70.9 71.8 — — —
SOFTCAR 71.1 70.5 71.2 — — —
CNN + LSTM 72.0 71.1 71.6 63.6 45.5 61.5
BERT 72.6 71.0 72.4 64.7 63.9 63.4
Our GCN Model 71.0 69.6 70.5 65.5 64.8 63.8
Our GCN-DA Model 73.2 71.6 72.5 65.8 65.2 64.2
(b) 3-way

UD All

Model Acc M-F1 W-F1 Acc M-F1 W-F1

SEMILAR 65.2 46.9 63.4 46.5 30.7 44.2
Sultan’s System 62.7 45.1 60.3 48.0 35.1 46.7
ETS 54.3 33.3 46.1 — — —
Saha’s System 64.0 47.9 61.2 — — —
SOFTCAR 63.7 48.6 62.0 — — —
CNN + LSTM 59.2 54.1 56.2 48.5 39.2 47.2
BERT 62.0 55.9 61.4 53.1 42.8 51.0
Our GCN Model 63.1 52.4 61.4 52.2 42.3 50.4
Our GCN-DA Model 63.4 56.6 62.52 53.6 43.2 51.3
(c) 5-way

UD All

Model Acc M-F1 W-F1 Acc M-F1 W-F1

SEMILAR 46.2 30.0 47.1 40.4 39.4 40.6
Sultan’s System 50.6 34.4 48.4 42.1 40.0 42.2
ETS 44.1 38.0 41.4 — — —
Saha’s System 51.1 35.7 49.2 — — —
SOFTCAR 51.2 30.0 47.1 — — —
CNN + LSTM 47.2 36.2 46.8 42.2 40.2 39.2
BERT 48.4 44.2 46.9 42.8 43.0 41.7
Our GCN Model 50.3 45.6 47.7 43.5 44.3 42.6
Our GCN-DA Model 51.2 46.2 49.2 44.6 42.1 42.7
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Themain reasons why our systems work well are as follows: (1) the global response-word relations
and global interaction among responses can be captured by the graph, and (2) the grade label infor-
mation can be passed via the neighbouring word nodes and propagated to the entire graph. In this
way, relations between the various expressions and the grade labels are obtained.

Table 4 lists some examples in which our system canmake correct predictions, but other baselines
(e.g. SEMILAR, Sultan’s System, and LSTM + CNN) cannot. We see that in Example1, our system suc-
cessfully learns that the distinct words of “dried up” and “evaporated” have the same meaning. In
Example2, the syntax structure of “if… stick, B; if not stick, C” is the paraphrase of “It will stick to B
and not C”. In Example (3), our system also learns the syntax expression “A. B” is equivalent to “first A
then B”.

However, in Figure 3, we see that our system’s performance on the literature dataset is not as
good as that on the math dataset. We find that the questions in the literature dataset have relatively
higher openness, and students can freely express their ideas from their individual perspective. For
example, one question in the literature dataset is “what appeals the most to you about the book
‘Twenty Thousand Leagues under the Sea’?”. The students answer the question from various per-
spectives, such as the characters, the storyline, the colourful language,… , and so on. For this

Figure 3. Experimental results on the two-subject dataset.
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kind of open-ended question, the patterns of good responses are more implicit and are too difficult
to learn.

Additionally, we know that when our model adopts data augmentation, nearly all the metrics are
improved, meaning that the technique of data augmentation can boost the system’s performance.

Ablation analysis. As shown in Figure 4, we perform an ablation study on the impact of “key
concept weights”, “bigram nodes” and “edges related to bigram nodes”. We observe that the per-
formance falls with each exclusion. When the “bigram nodes” and “edges related to bigram nodes”
are removed from the graph, the system performance drops dramatically, indicating that (1) fewer
graph nodes and edges will limit message passing among the nodes; and (2) word order information
is very important for ASAG. Additionally, we find that the exclusion of “key concept weights” has a
considerable influence on the model performance, showing that the key concepts that the questions
aim to examine are very helpful for ASAG.

6. Discussion

Scalability. While the GCNs have achieved good performance in previous studies, the scalability
issue still exists. In this work, we have adopted the two-layer GCN as (Kipf & Welling, 2017) to
make the prediction, and the computational complexity of Eq. (6) is O(ECHF), where E is the
number of edges, W(0) [ RC×H, and W(1) [ RH×F . In other words, the algorithm’s computational

Table 4. Examples correctly predicted by our systems.

Example1 Question: How did you separate the salt from the water?
Ref. Answer: The water was evaporated, leaving the salt.
Correct std. Response: The water dried up and left the salt. ()

Example2 Question: How can you use a magnet to determine if the key is iron or aluminum?
Ref. Answer: If the key sticks, the key is iron; if the key does not stick, the key is aluminum. (syntax form: if.. stick, B; if
not stick, C)

Correct std. Response: It will stick to iron and not aluminum.
(syntax form: It will sick to B and not C)

Example3 Question: Which of these processes are involved in causing rain? Explain your answer. A. evaporation
B. condensation C. both evaporation and condensation.

Ref. Answer: Water evaporates to form vapour. The vapour condenses to form raindrops. (syntax form: A. B)
Correct std. responses: Because first it evaporates then it turns into condensation then it rains. (syntax form: first A
then B)

Figure 4. Ablation Study of our model on SemEval-2013 datasets.
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complexity is linear to the number of graph edges. indicating that the proposed model could prop-
erly perform when the graph stays in a normal size.

On the other hand, the networks are still difficult to be extended and handle the large graphs. The
main reason is that when multiple convolutional layers are stacked, the final state of a node involves
the hidden states of a large number of its neighbouring nodes, which makes the back-propagation
highly complex. Although some new methods, such as inductive representation learning (Hamilton
et al., 2017), have been proposed to address this problem, it is still challenging and not fully resolved.
Besides that, in reality, a student response may be submitted at any time and need immediate feed-
back from the model, which requires not only static graphs, but also dynamic graphs. To the best of
our knowledge, it is still hard to effectively handle dynamic graphs (Zhou et al., 2019), which are the
important topics for our future study.

Risk and limitation. In recent years, we have seen a great success in building different AI-driven
intelligent systems, but most systems come with some common risks and limitations, including vul-
nerability, interpretability and unfairness. Similarly, the existing ASAG systems also encounter such
potential risks and negative impact, which should be properly controlled and managed. Comparing
with other AI-driven systems, the ASAG systems might face more challenges and risks when they are
deployed for real-world applications. For example, (Azad et al., 2020) describe the deployment of an
ASAG system on a high-stake educational environment to support an exam in a large-enrollment
college programming course. To alleviate the student potential dissatisfaction caused by the
grading errors of the ASAG system, the system has to permit students submit their answers multiple
times, and meanwhile provide students an opportunity to appeal and request a manual re-scoring.
(Filighera et al., 2020) study the issue of “How difficult to fool the ASAG systems” on the setting of
exams. They find that the short token sequences can be prepended to students’ responses to artifi-
cially improve their grade assigned by the ASAG systems.

In short⍰we need more efforts to minimize the potential negative impacts and risks of the ASAG
systems, especially for their deployment in high-stakes exams. It is also possible to explore the
human-in-the-loop AI to tackle the potential risks and limitations of today’s ASAG systems.

7. Conclusions

We explore the application of the GCN model to capture the global relations among student
responses for ASAG. We construct a graph for all student responses and build a GCN model to
encode the graph structure, obtaining its graph embedding and the relations between the
grading labels and the student responses with different expressions. To alleviate the overfitting
problem, we augment the data by using back translation. We validate our model on two ASAG data-
sets and show its effectiveness.

In the future, we will consider more usage of word order information and key concept information
in graphs for ASAG, and further study how to define proper feedback for open-ended questions and
help the models more effectively learn the implicit semantic information of the responses.
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