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Abstract—Recently there has been increasing interest in build-
ing networks with Ambient Intelligence (AmI), which incorpo-
rates the user-centricity and context awareness. However, both
the Internet TCP/IP protocol stack and the seven-layer OSI
reference model are not suitable for AmI networks, because
they do not specifically take the end-user requirements into
consideration in their architecture design. Under the client-
server architecture, we propose to explicitly take the end-user
into account by defining a new layer called User Layer above
the traditional application layer. The User Layer empowers
the end-users to influence network performance based on their
interaction activities with the networks. We adopt the Model
Human Processor (MHP) approach for building the User Model.
After that we present an exemplary User Layer implementation
to illustrate how the User Layer interacts with the underlying
protocol stack and improves end-user’s satisfaction with network
performance.

I. INTRODUCTION

The seven-layer open systems interconnect (OSI) model and
the TCP/IP Internet protocol stack provide layered architec-
tures that partitions complicated network related tasks into
different layers. Each layer has specific features and func-
tionalities, with peer interactions at equivalent layers across
the networks, and defined interfaces between layers. Both the
traditional seven-layer OSI reference model and the TCP/IP
Internet protocol stack have played prominent roles in the
success of modern computer networks. Many fundamental
and respected principles are implemented in those existing
architectures such as the packet switching for multiplexing
[1], the end-to-end arguments for defining communication
protocols [2] and global addressing for routing the datagrams.
Sometimes, the existing layered architecture cannot be highly
adaptive and Quality of Service (QoS) efficient by sharing state
information among different modules and layers. Therefore,
researchers propose the cross layer design approach that
actively exploits the dependence between protocol layers to
obtain performance gains. There are many cross-layer design
proposals summarized in [3] and they typically follow some
basic approaches, such as merging of adjacent layers or
vertical calibration across layers [4]. However, the above-
mentioned two network architectures with the common cross-
layer proposals do not adequately meet the need of AmI
networks, because neither of them directly takes end-users,

a critical and key element, into consideration in their archi-
tectures. End-users refer to the individual users who employ
networked applications on their own hosts.

The networks with Ambient Intelligence (AmI) emphasize
on user-centricity and context awareness, where the interaction
between the end-user and the networks becomes most crucial.
Therefore, we propose to explicitly define a new layer, which
is called the User Layer, above the traditional application layer
as shown in Fig. 1. The User Layer integrates the end-users
into the network architecture, and empowers the end-users
to influence network performance based on their interaction
behavior. The User Layer aims to meet the end-users explicit
or implicit requirement, and eventually improve their satis-
faction with network performance. On the other hand, the fast
evolving networking technologies are eroding the fundamental
principles of the traditional computer networks, although many
of them are still valid and quite powerful [5]. As one of the
well established design principles, the end-to-end arguments
is frequently compromised due to the arbitrary deployment of
caches or proxy servers between the clients and the original
servers. The User Layer also provides an alternative for the
original server to re-establish communication with the end-
users through defining some new User Layer protocol.

Different from our prior work [6], we extend the User Layer
framework from client side to the server side. Thus the current
User Layer operates under the client-server architecture and
effectively influences both sides of the networks. Moreover,
we adopt Human-Computer Interaction (HCI) and cognitive
psychology knowledge to build User Model. Based on the
new User Model, we also present a new exemplary User
Layer implementation in this paper. All our efforts aims
to provide the user-centric, highly adaptive and end-to-end
network services to improve the end-user’s satisfaction with
network performance.

The rest of this paper is organized as follows. In section II,
we propose the architecture of the User Layer and introduce its
main building blocks. In section III, we describe the Human
Information Processing approach for building the model of
the end-user. Section IV presents an exemplary User Layer
implementation with the first User Layer protocol and corre-
sponding simulation results. We discuss the future work and
conclude in section V.
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II. SYSTEM OVERVIEW

The User Layer framework operates under the client-server
architecture, and consists of three main components as shown
in Fig. 2.

A. User Interface

The User Interface aims to fulfill two main functions:
(1) Monitor and record the interaction activities and

behavior between the end-user and each running
application. Sometimes, the User Interface is also
required to gather the relevant operating system in-
formation and other context information in real time.
The User Interface may operate in an invisible way to
collect those interaction data and work automatically
in background.

(2) Provide end-users a direct and efficient way to inter-
act with the networks. For example, end-users can
express their own perception about current network
performance by simply pressing some button on the
User Interface or by other visible ways.

In short, the User Interface undertakes the interaction infor-
mation gathering task and works at the client side of the User
Layer.

B. User Model Generation Subsystem

The User Model Generation subsystem can work at both
the client side and the server side to generate the Individual
User Model or the Group User Model, respectively. The
main task of the User Model Generation subsystem is to
derive and build the User Model for the specific end-user
or group of users based on the interaction data collected by
the User Interface. The User Model plays a crucial role in
the proposed architecture, because it helps the User Layer
ascertain end-users’ status, intention or preference. In order
to generate an effective and accurate User Model, Human-
Computer Interaction (HCI) and related cognitive psychology
knowledge are required, which will be elaborated in Section
III. Moreover, data mining and machine learning methods can

also be introduced here to construct the User Model and infer
the stable end-user behavior patterns.

C. Control Subsystem

The Control subsystem can also work at both sides of
networks, and establish the feedback loop between the User
Layer and the underlying protocol stack. The Control subsys-
tem mainly adjusts the different parameters of the lower layers
in accordance with some control rules. The objectives of the
control rules aim to improve the end-users’ satisfaction and
optimize network performance.

III. MODELING THE END-USER

In order to build an effective User Model for the User Layer,
we must first understand the end-users and how they inter-
act with their computers and networks. In Human-computer
interaction (HCI) and related cognitive psychology fields, a
number of well developed frameworks and models have been
applied to explain and describe end-user interaction behavior
[7]. The Human Information Processing approach is one of the
most successful methods to conceptualize how the end-user’s
mind works. The basic idea of this approach is that human
behavior is a function of several ordered processing stages.
Different architectures, such as the ACT [8] and the SOAR
[9] models, hold great promise for this field, while the most
widely accepted and well-known model is the Model Human
Processor (MHP) proposed by Card et al. [10].

As shown in Fig. 3, MHP consists of three interacting
subsystems comprising the Perceptual subsystem, the Cogni-
tive subsystem and the Motor subsystem, and each with its
own processors and memories. The Perceptual subsystem is
equipped with sensors and associated buffer memories for
collecting and temporarily storing the external information.
The Cognitive subsystem accepts symbolically coded informa-
tion from the buffer memories of the Perceptual subsystem,
and then decides on how to respond. Finally, the Motor
subsystem carries out the response and takes action. The
MHP models the information processing of the end-user as a
sequential or parallel operation of the above-mentioned three
MHP subsystems. Furthermore, the Rationality Principle and
Problem Space Principle of MHP indicate that the end-user’s
behavior is based on rational activity, which means the end-
user will not randomly and arbitrarily change from one state to
another. Besides, all rational activities are served for achieving
the end-user’s goals, given the task and external information
and bounded by the user’s knowledge and processing ability.

Based on the MHP and the two basic principles, we can
define many different but reasonable end-user states for de-
scribing the human-computer complex interaction behavior. In
this paper, we just define two general but significant end-user
states: User Present State and User Absent State. Then each
running computer application can be associated with only one
state, either User Present State or User Absent State.

(1) User Present State: Both the end-user’s Perceptual
and Cognitive subsystems are turned ON for acquiring and
processing the information of the corresponding application.
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(2) User Absent State: All the end-user’s three subsystems
are turned OFF and thus no interaction between the end-user
and the corresponding application.

These end-user states can be applied to both networked
and non-networked applications such as Web browser, Instant
Messaging programs or Office software. Within the Web
browser, each displayed Web page is defined as one single
application, while one Web page may generate many different
HTTP connections, which can be maintained by different Web
servers simultaneously.

In order to identify above two end-user states, the User
Layer monitors and detects the end-user’s three subsystems in
real time:

∙ For the end-user Perceptual subsystem, MHP shows that
the most important buffer memories in the Perceptual
subsystem are the Visual Image Store and the Audi-
tory Image Store. Therefore, the User Interface monitors
which application is shown on the screen and which
application’s sound is generating an audio output. In

addition, the webcam may also help to monitor the end-
user’s visual sense by capturing the user’s eye movement,
when necessary.

∙ For the end-user Cognitive subsystem, although many
researchers attempt to model and build the cognitive
architecture [11], it is still difficult to accurately dif-
ferentiate its status. Fortunately, MHP demonstrates that
the Motor subsystem follows the Recognize-Act Cycle
of the Cognitive Processor. Thus through monitoring
the Motor subsystem behavior, the User Layer might
indirectly derive the Cognitive subsystem status.

∙ For the end-user Motor subsystem, MHP considers the
arm-hand-finger system as the most important actuator.
From observing the keyboard and the Mouse input infor-
mation, the User Layer can derive the specific application
on which the end-user’s Cognitive subsystem is working.
Moreover, when the end-user is speaking to the micro-
phone, it is also an important clue for the User Layer to
know which application can be associated with the User
Present State.

Based on the MHP approach and the above analysis, five
State Conditions require to be verified by the User Interface:

{Application Displays in the Foreground of the Screen}
{Application Generates Output for Earphone or Speaker}
{Application Receives the Mouse Input}
{Application Receives the Keyboard Input}
{Application Receives the Microphone Input}
Then we propose a simple but effective User Model to

determine the end-user state in real time:
(1) IF any TWO or more above State Conditions are TRUE

simultaneously for the same running application, THEN the
corresponding application holds the User Present State.

(2) IF NONE or only one State Condition is TRUE for
the running application, THEN the corresponding application
holds the User Absent State.

Above User Model works well in many cases and for
many applications, but more complicated User Model can be



constructed for some specific network application or situation
through user study. More importantly, for the different User
Layer implementations, new end-user states can be defined and
employed on the basis of MHP and relevant cognitive science.

IV. EXEMPLARY USER LAYER IMPLEMENTATION

In order to show the proposed User Layer in action, we
show an exemplary User Layer implementation, which aims
to reduce the end-user perceived latency when browsing the
Web pages. The first User Layer protocol, User State Transfer
Protocol (USTP), is also defined for delivering the end-user
state from the client side to the Web server side. Besides the
example given in this section, the User Layer architecture with
the proposed User Model can also be deployed in many other
occasions, including the network resource allocation as well
as the Cloud Computing data sharing and event notification
[12].

A. Problem Description

As the major information resources on the modern Internet,
more than 1 trillion Web pages exist in current cyberspace and
the number is still rapidly increasing every second. Hypertext
Transfer Protocol (HTTP) [13] is the de facto application-
layer communication standard for transferring the Web pages.
The persistent connections mechanism of HTTP/1.1, also
called HTTP keep-alive, allows HTTP clients to send multiple
requests over the same TCP connection. As one of the key
properties of HTTP, the HTTP persistent connection reduces
network congestion from re-establishing TCP connections and
conserves the hosts’ CPU and memory usage. As a default
function, persistent HTTP connection is widely implemented
on both the browser and the server sides. HTTP/1.1 [13] speci-
fies that “Servers will usually have some time-out value beyond
which they will no longer maintain an inactive connection” and
“The use of persistent connections places no requirements on
the length (or existence) of this time-out for either the client or
the server”. Clearly, HTTP/1.1 does not explicitly define the
persistent connection-closing condition but suggests picking a
proper timeout value for terminating the persistent connection.
In the practical implementation of HTTP/1.1, a fixed timeout
value is always imposed: the latest version 2.2.1 of the Apache
HTTP Server employs a 5-second and Microsoft IIS uses
a 120-second as their default timeout values, respectively.
Improperly configuring the timeout value will easily degrade
network performance: A small fixed timeout value causes
low utilization of the persistent HTTP connection, and thus
increase the end-user perceived latency and network burden;
On the other hand, a large fixed timeout value will waste and
even quickly exhaust Web server resources, which also results
in the long and unpredictable end-user perceived latency.

On the other hand, it is an error-prone and time-consuming
task for Web administrators to manually pre-configure a rigid
and fixed timeout value for their Web servers. There are
some research works of tuning the persistent HTTP connection
timeout value to achieve optimal Web server performance:
Faber [14] and Barford [15] indicated that the Web server
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Fig. 4. The User State Transfer Protocol (USTP) workflow.

should close the persistent connections once the client be-
comes inactive, but they did not provide any specific ap-
proach. Mogul [16] proposed to give higher priority to newly
established connections, Sugiki [17] suggested setting higher
priority to small RTT connections and prematurely terminate
the ones with large RTT. However, none of these previous
studies directly address the main problem of HTTP persistent
connection timeout mechanism: In a HTTP session it is
difficult to discriminate between a persistent connection that
is being used by the end-user and a persistent connection
that is already in a long-term idle status. Both TCP and
HTTP, and even the five-layer Internet protocol stack, cannot
provide the relevant end-user’s browsing behavior information
for controlling the HTTP persistent connection timeout.

Therefore, adopting the newly proposed User Layer archi-
tecture is a natural and effective way to solve this problem.
Consequently, we need to define the first User Layer protocol,
User State Transfer Protocol (USTP), to transfer the end-user
state to the Web server side.

B. User State Transfer Protocol (USTP)

The User State Transfer Protocol (USTP) is the first User
Layer protocol, which is used to deliver real time individual
end-user states from the client side to the server side. The
USTP presumes a reliable transport and in this case using
HTTP persistent connection, which is essentially the TCP
connection, as its underlying carrier. The USTP works under
the client-server architecture and simply use the request-
response message exchange pattern. The overall workflow of
the USTP can be illustrated in Fig. 4:

1) After the persistent HTTP connection becomes idle, the
Web server side USTP program waits for some time
interval and then initiates the request message to the end-
user side via the existing persistent HTTP connection.

2) Upon receiving the USTP request, the end-user side
USTP program retrieves the current individual end-user
state, either User Present State or User Absent State,
from the User Model Generation subsystem of the User
Layer.

3) The end-user side USTP program encapsulates the cur-
rent user state in an USTP response message, and sends
it back to the Web server side.



4) The Web server side USTP program receives the re-
sponse message and delivers the user state information
to the User Model Generation subsystem for the further
processing.

5) After some time interval, the server side USTP program
repeats the request via the same persistent HTTP con-
nection, if that connection still exists in the idle status.

Theoretically, the USTP should adjust the time interval
between consecutive requests according to the end-user’s
browsing behavior pattern. Based on the MHP theory, the end-
user’s browsing behavior primarily depends on his Cognitive
subsystem, whose tasks involve learning, retrieving the facts
from its long-term memory and solution of problems. Through
practical user study and theoretical calculation, MHP shows
that the cognitive processing rate has a wide range among
different individuals because of their distinct processing ca-
pacities. For example, human reading speed ranges from 52
to 652 words per minute; in working memory, the decay
parameter varies from 5 to 226 seconds. In other word, even
for the same Web page, different end-users require different
processing times and the variance magnitude can be several
seconds or even larger. In this paper, we simplify the algorithm
by setting 7 seconds, the average decay parameter value of the
human cognitive subsystem [10], as the time interval value of
USTP. In future work, if the Individual User Model Generation
subsystem can capture the corresponding end-user’s cognitive
capacity and roughly predict his processing time, the system
performance can be further improved.

Remark: The current USTP operates only in the simplest
case, and a more complicated situation occurs when one or
more intermediaries are present between the end-user and the
Web server such as when a proxy server is in use. Under such
situation, a new version of USTP needs to be further discussed
and specified.

C. User Layer Control Subsystem

Once the USTP response message successfully transfers the
end-user state to the Web server, the User Layer will deliver
it to the User Model Generation subsystem to build the Group
User Model for the convenience of the server batch processing.
In this User Layer example, as mentioned before, we mainly
aim to reduce end-user perceived latency when he browses
Web pages online. Thus we do not build the Group User Model
for the Web server, but simply move each delivered end-
user state to the Control subsystem for continue processing.
Consequently, the Control subsystem at the server side can
adopt the following control rules:

1) IF the User Absent State for the existing HTTP con-
nection arrives, THEN the Control subsystem imme-
diately signals the application layer to terminate the
corresponding HTTP persistent connection.

2) IF the User Present State for the existing HTTP connec-
tion arrives, THEN the Control subsystem signals the
application layer to maintain the corresponding HTTP
persistent connection and wait for the next end-user
state.

End User 2

7.2Mbps

7.2Mbps

7.2Mbps

100Mbps 10Mbps HTTP

Server
(WAN Delay)

ISP

20ms

20ms

20ms

400ms 80ms

End User 1

End User 3

Fig. 5. Networking topology in NS-2.

We can see that the above simple control rules can effec-
tively change the inflexible HTTP timeout mechanism to be
adaptive to the end-user’s interaction behavior.

D. Simulation Results

We implement the traditional HTTP persistent connection
mechanism, USTP and the User Layer Control subsystem in
the NS-2 simulator [18]. The simulation topology, as depicted
in Fig. 5, consists of multiple end-users and a single HTTP
server. The WAN Delay is set to 400ms, which commonly
exists especially under the congested network condition. We
suppose that the end-user state transition can always be
identified by the User Layer and can be modeled as a two-state
Markov process. We assume each end-user’s sequential HTTP
request process follows a homogeneous Poisson process with
a rate of 6 requests /minute. We set the mean size of the Web
page is 5K bytes and all HTTP requests are the static requests.
Since optimizing the Web server’s overall performance is
out of the scope of this paper, we assume the Web server
employs some admission control schemes in [19] [20] to avoid
an overload situation. For the first simulation scenario that
without the User Layer, we set the timeout value for HTTP
persistent connection to 5 seconds, which is the same as the
default timeout value of the Apache Server 2.2.1. Because
we mainly aim to reduce the end-user perceived latency, we
adopt the Web page response time as the performance metric.
The Web page response time is the time interval that starts
when the end-user sends the Web page request and ends when
the end-user receives the last object of that Web page. Other
performance metrics such as Web server throughput can be
used in the future Internet experiment.

The simulation results in Fig. 6 shows that without the
User Layer, the average Web page response time (end-user
perceived latency) is around 2100 ms; while with the User
Layer controlling the persistent HTTP connection, it can be
reduced to 1100 ms. Fig. 7 describes the end-user state tran-
sition process during the simulation, where the User Absent
State continues for about 50 seconds and the User Present
State occupies the other simulation time. From this example,
we can easily see that the User Layer can effectively reduce the
average end-user perceived latency and thus improves the end-
user’s satisfaction with network performance. More impor-
tantly, it empowers the end-users to influence and enhance the
network performance based on their own interaction behaviors
and activities.
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V. CONCLUSION AND FUTURE WORK

In this paper, we rethink the design issues of building
the networks with Ambient Intelligence. Under the client-
server architecture, we propose the specific User Layer and its
framework. We introduce the Model Human Processor (MHP)
approach and demonstrate how HCI and cognitive science
knowledge can be applied in the User Layer design. Then we
present an exemplary User Layer implementation for control-
ling the HTTP persistent connection timeout mechanism and
show its feasibility and effectiveness. These efforts go towards
supporting a user-centric AmI network design goal.

This initial contribution lays the groundwork for further
research. Firstly, with the aim of improving end-users’ satis-
faction and optimizing network performance, the User Layer
will explore interactions with more underlying layers and their
protocols such as Transport Layer and TCP. Secondly, we will
further develop the User Model Generation subsystem based
on the Human Information Processing approach and other
cognitive science knowledge. Thus more interaction informa-
tion between the end-user and the underlying networks will
be exposed to the existing User Layer for building the User
Model. Thirdly, for the practical application of the adaptive
persistent HTTP connection, the proposed control rules will
incoporate with the algorithms of performance regulation of
Web server [21]–[23] in the future Internet experiment.
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