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Advances in Ambient Intelligence (AmI) technologies, when combined with user-centric
computing, present major opportunities for building new communication pathways
between end-users and traditional computer networks. We propose to explicitly take the
end-user into account by defining a new functional module called the User Module across
the layers of the Internet protocol stack. This new User Module empowers end-users to
improve network performance and enhance the end-user Quality of Experience (QoE)
based on their interaction activities. To successfully capture the significant interaction
information of end-users, we leverage on the well-established Human Information Pro-
cessing approach to build the end-user model. Subsequently, we present two exemplary
User Module applications addressing the Hypertext Transfer Protocol (HTTP) and the
Transmission Control Protocol (TCP), respectively. Both applications illustrate how the User
Module operates to effectively improve the underlying network performance and eventu-
ally enhance the end-user QoE.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction arguments for defining communication protocols [4] and
As an effective technique for multiplexed utilization of
interconnected networks and their hosts, today’s Internet
does not explicitly take into account end-users in its basic
infrastructure. It is well-known that the 7-layer Open Sys-
tems Interconnect (OSI) model [1] and the 5-layer Internet
protocol stack [2] provide layered architectures that parti-
tions complicated network related tasks into different lay-
ers. Each layer has specific features and functionalities
with peer interactions at equivalent layers across the net-
works. Both the traditional OSI model and the Internet pro-
tocol stack have played prominent roles in the success of
the modern computer networks. Many fundamental and
respected principles [3] are implemented in the Internet
such as packet switching for multiplexing, end-to-end
. All rights reserved.
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global addressing for routing the datagrams. One of the
design principles is that the Internet serves as the commu-
nication medium between two hosts that desire speaking
to each other [5,6]. With such host-centric vision, both
the 7-layer OSI model and the 5-layer Internet protocol
stack simply regard the end-user and the network device
as one entity, and inevitably ignore the end-user’s pres-
ence, behaviors and interaction activities.

The AmI paradigm [7,8] is characterized by the intelli-
gent environment and systems with prime emphasis on
user-centered service, context-awareness and transpar-
ency. In other words, the AmI system aims at having ‘‘the
system adapt to its users’’ rather than the other way round.
Most AmI systems mainly concentrate on building the
embedded systems for integration of various electronic
devices and sensors into the environment for some specific
application scenarios. To facilitate long distance data trans-
mission for these AmI systems, the Internet and its underly-
ing protocol stack has served as the default backbone data
communication carrier. Nevertheless, few prior works con-
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sider introducing the AmI concept into the Internet protocol
stack design to further enhance the Internet as a user-cen-
tric, intelligent, and interactive communication network.

As indicated earlier, the traditional OSI model and the
Internet protocol stack, which emphasize host-centric de-
sign principle, do not adequately fulfill the requirement
of our AmI vision. In our AmI vision, the interaction be-
tween the end-user and the underlying networks occupies
a most crucial position in the user-centric and context-
aware Internet design. Therefore, we propose to explicitly
define a new functional module, called the User Module,
across the existing layers as shown in Fig. 1. The newly
proposed User Module aims to smoothly integrate
end-users into the established Internet protocol stack,
accordingly empower end-users to improve network per-
formance based on their states and interaction activities,
and eventually enhance end-users’ subjective perception
of network performance, namely the QoE.

The User Module operates under the client–server archi-
tecture and interacts with the underlying networks on the
basis of the end-user state. The end-user state, in this work,
refers to any conditions of Internet end-user that relate to
the underlying networks and its applications, which covers
the end-user presence, behaviors and interaction activities.
Under the User Module architecture, several end-user mod-
els for different Internet services are built to derive the two
defined end-user states in Section 4. We then present two
exemplary User Module applications utilizing the built
end-user models: the first HTTP case effectively reduces
the end-user perceived latency in Web browsing and the
unnecessary network traffic through adjusting the HTTP
protocol in the application layer; the second TCP case
dynamically allocates the limited bandwidth resource to
enhance the end-user QoE through tuning the TCP protocol
in the transport layer. Adjusting different layers and proto-
cols usually improves underlying network performance
and the end-user QoE from different aspects, and in this
paper, the User Module mainly works with the upper two
layers, i.e., the application layer and the transport layer.
More ambitiously, all the existing layers can be involved
in the proposed User Module framework as shown in
Fig. 1. This paper makes three main contributions:

(1) Our AmI vision motivates a new user-centric net-
work design through augmenting the traditional lay-
ered network architecture, and the proposed User
Module explicitly incorporates end-users into the
existing Internet protocol stack.

(2) We design and implement a concrete User Module
framework consisting of three key functional subsys-
tems. Based on such framework, we present how the
human–computer interaction and cognitive psychol-
ogy knowledge can be introduced and employed for
building typical and reliable end-user models.

(3) Two exemplary and practical applications of the
User Module, namely the HTTP and the TCP cases,
are provided to improve the underlying network
performance and enhance end-user QoE.

The outline of this paper is as follows. We introduce re-
lated work in Section 2. In Section 3, we propose the User
Module architecture and introduce each of its main build-
ing blocks. In Section 4, we construct the model for end-
users on the basis of the Human Information Processing
approach. In Section 5, we present the first User Module
application with comprehensive experimental results. In
Section 6, we describe the second application under the
same User Module architecture, and adopt the structured
approach to assess the end-user QoE. Finally, we discuss
possible future work and conclude in Section 7.

2. Related work

The AmI draws a blueprint for building new digital
environments that adapt to end-user needs. With such a
human-centric computing vision from both the technical
and the social perspectives, there have been tremendous
efforts [9–11] on designing AmI platforms. MIT has built
a pervasive, human-centered computing environment in
the Oxygen project [9]. The system deploys multiple
embedded computational devices called Enviro21s (E21s)
in offices, cars and homes to collect context information.
With the hand-held devices called Handy21s (H21s) and
the indoor location support, Oxygen’s system can assist
its users perform a group of tasks in their daily lives. Geor-
gia Tech’s researchers have designed an environment that
can sense the inhabitants through a variety of sensing
technologies in their ‘‘Aware Home’’ project [10]. One
interesting Aware Home initiative called ‘‘Aging in Place’’
focuses on developing the technology and applications
which enable senior adults to live independently in their
homes. IBM has proposed the next-generation workspace
solution in its ‘‘Blue Space’’ project [11], which integrated
sensors, actuators, displays and wireless networks into
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the AmI environment. The workspace solution aims to
increase productivity by deterring unwanted interruptions
and facilitating communication among group members.

Most of the above-mentioned and related AmI systems
emphasize on building the embedded intelligent environ-
ment, and the Internet with its underlying protocol stack
only serves as the default long distance data communication
medium. We aim to incorporate the AmI into the Internet
infrastructure itself, and thus further enhance the Internet
as a user-centric and context-aware intelligent communica-
tion network. Our AmI vision imposes many new challenges
on the system-level design, where one of the most critical
one is to understand the complicated interaction activities
between the end-users and various Internet services.

Fortunately, the fields of Human–Computer Interaction
(HCI) and cognitive psychology offer us numerous
approaches to model the end-users and their interaction
behavior. The Human Information Processing (HIP) ap-
proach [12] holds considerable promise to address how
an end-user receives, stores, integrates and uses the infor-
mation from the networks. The basic idea of the HIP ap-
proach is that the human is like a computer or a complex
system that can be analyzed in terms of subsystems and
their inter-relationships. Different HIP models have been
developed to characterize or predict the end-user interac-
tion activities and performance. The most widely known
models include the Model Human Processor (MHP) pro-
posed by Card et al. [13] and the Executive Process Interac-
tive Control (EPIC) [14]. Both models assume that a series
of discrete phases compose the information processing,
and the output of one phase serves as the input for the
next. The McClelland cascade model [15] considers that
each phase is continuously active with continuous output
values, where only partial information at each phase is
transmitted to the next. Furthermore, some new ap-
proaches start to challenge and improve on the traditional
HIP approach, such as the Situated Cognition [16] and the
Cybernetic approach [17]. In this paper, our end-user mod-
el is built based on MHP, not only because it is the most
widely known and established model, but more impor-
tantly, it offers an effective way to precisely define
different states of end-users, which can be validated by
specific communication conditions.

One of our main objectives of designing the User Mod-
ule is to enhance the end-user QoE [18,19], which can be
simply interpreted as the end-user’s subjective perception
on the qualitative performance of communication systems
and applications. The ITU Telecommunication Standardiza-
tion Sector (ITU-T) defines QoE as ‘‘the overall acceptability
of an application or service, as perceived subjectively by
the end user’’ [20]. Recently, particular attention is given
to assess and measure QoE not only in terms of traditional
Quality of Service (QoS) parameters [21], but a joint conse-
quence of the communication context environment, the
characteristics of the network service in use and the under-
lying network performance [22]. QoE is currently receiving
immense interest from both the academic and industrial
perspectives, and the progress on the techniques for
enhancing and modeling the QoE will impact the user-cen-
tric network design and eventually benefit ordinary Inter-
net end-users.
3. System overview

The system block diagram with the proposed User
Module is illustrated in Fig. 2, and it operates under the
traditional client–server architecture. The User Module
consists of three core components: User Interface subsys-
tem, User Model subsystem and Control subsystem.
3.1. User interface subsystem

The User Interface subsystem would directly interact
with the individual end-user when it is operating at the cli-
ent side. This subsystem always equips with some specifi-
cally designed User Interface and a variety of physical
sensors to fulfill the following two main functions:

(1) Monitor and record the interaction activities and the
context information between end-user and running
Internet services. The interaction activities include
both host-oriented and user-oriented behaviors,
such as which application is currently displaying in
the screen foreground, and whether the end-user is
touching the mouse or keyboard. This subsystem is
also responsible for collecting any valuable context
information, such as end-user’s location, identity
and preference. Then it delivers all interaction and
context information to the User Model subsystem
in real-time for further processing. By leveraging
on the ubiquitous sensing platform with intelligent
physical sensors, the User Interface subsystem can
operate and perform all its work in an invisible way.

(2) Besides automatically collecting the end-user inter-
action and context information in the background,
the User Interface subsystem also provides end-
users a direct and visible interaction service. For
example, end-users can inform the protocol stack
their states by simply pressing some matching but-
tons on a specially designed graphical User Interface,
and the User Interface can show some significant
network conditions to end-users through any user-
friendly ways.

In short, the User Interface subsystem mainly under-
takes the interaction information gathering task, and di-
rectly works with the end-user at the client side of the
User Module.
3.2. User model subsystem

The User Model subsystem plays a key role in the User
Module architecture, because it is the component for con-
structing, hosting and utilizing the individual user model
and the group user model. The individual user model refers
to the abstract data model for ascertaining the end-user
presence, preference and interaction activities. In order to
build an effective and accurate end-user model, HCI and
the related cognitive psychology knowledge can be em-
ployed, which will be elaborated in Section 4. When more
complex end-user states need to be identified, data mining
and machine learning methods [23] can be introduced to
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construct the corresponding end-user model, and some ad-
vanced reasoning approach, such as the ontology reasoning
[24], can also be applied. The group user model usually
presents at the server side, and it is mainly used to help en-
hance server performance and facilitate server batch
processing.

The User Model subsystem mainly consists of two
parts: a shared database and the built user model. The
shared database is used to collect, retrieve and store
important network condition from underlying layers. The
network condition covers the current operating protocols,
critical network configurations, and QoS parameters such
as the real-time bandwidth consumption and the packet
loss. Meanwhile, the interaction data from the User Inter-
face subsystem are also delivered to the shared database
at runtime. According to the built user model, the shared
database then performs the task of data filtering to pick
out all irrelevant data before sending the collected data.
The built user model processes those collected data
accordingly and generates the real-time end-user state,
which will be promptly delivered to the Control subsys-
tem. Note that the User Model subsystem can work at both
the client side and the server side, where the correspond-
ing built user model is the individual user model and the
group user model, respectively. Accordingly, the output
of the User Model subsystem, as shown in Fig. 2, can be
the individual end-user state and the group end-user state.
3.3. Control subsystem

The Control subsystem is the component for directly
interacting with the underlying network infrastructure.
For different User Module applications, the Control subsys-
tem may interact with different protocols and different
layers, but its main objective is always to improve under-
lying network performance and enhance the end-user
QoE. The Control subsystem could work at both the client
side and the server side, receiving the individual end-user
state or the group end-user state information. The Control
subsystem essentially bridges the gap between the User
Module and the underlying network infrastructure. In this
paper, the User Module only works with the upper two lay-
ers, and how to enable the Control subsystem to interact
with the lower layers of Internet protocol stack needs to
be addressed in future work.

When interacting with the underlying network, the Con-
trol subsystem does not attempt to modify any internal
structure of the existing network protocols and Internet
system architecture. In most cases, the Control subsystem
would only cautiously choose the proper parameters, which
are usually accessible and adjustable in their corresponding
protocols and layers, and then actively tunes these parame-
ters in accordance with the pre-defined control rules. Thus
it is relatively different from the traditional cross-layer
design [25]. Cross-layer design always exploits the depen-
dence between protocol layers to obtain performance gains
and typically follows some basic structures, such as creating
new interfaces or merging of adjacent layers [26], to share
and exchange state information, while the Control subsys-
tem focuses on actively managing the exposed parameters
of the existing network protocols and configurations.
Hence, in general, the integrity of the conventional Internet
layered architecture and protocols can still be well main-
tained, when the User Module with the given Control
subsystem is introduced and implemented.

The above-described three subsystems compose the
core architecture of the User Module, and such design
explicitly and smoothly incorporate the end-user into the
Internet mainstream infrastructure.
4. Modeling the end-user

In order to build an effective User Model subsystem, we
must first understand how the end-user interacts with the
underlying networks, or more specifically the Internet ser-
vices and applications on the networked host. As indicated
earlier, HCI and cognitive psychology fields offer a variety
of well developed frameworks and models to explain and
describe the end-user interaction behavior. The HIP
approach is one of the most successful methods to concep-
tualize how the end-user’s mind works. The basic idea of
this approach is that human behavior is a function of sev-
eral ordered processing stages. In other words, the human
is like a system that can be analyzed in terms of subsys-
tems and their interrelation. Different architectures, such
as the ACT [27] and the SOAR [28] models, hold great
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promise for the HIP approach, while the most widely
accepted and well-known model is the Model Human
Processor (MHP) proposed by Card et al. [13].

As shown in Fig. 3, MHP consists of three interacting
subsystems: the Perceptual subsystem, the Cognitive sub-
system and the Motor subsystem, and each with its own
processors and memories. The Perceptual subsystem is
equipped with sensors and associated buffer memories
for collecting and temporarily storing the external infor-
mation. The Cognitive subsystem accepts symbolically
coded information from the memories of the Perceptual
subsystem, and then decides on how to respond. Finally,
the Motor subsystem carries out the response and takes ac-
tion. The MHP models the information processing of the
end-user as a sequential or parallel operation of these
three MHP subsystems. Furthermore, the Rationality Prin-
ciple and Problem Space Principle of MHP indicate that the
end-user’s behavior is based on rational activity, which
means the end-user will not randomly and arbitrarily
change from one state to another. Moreover, all rational
activities serve to achieve the end-user’s goals, given the
task and external information and bounded by the user’s
knowledge and processing ability.

Based on the MHP and the two basic principles, we can
define many different but reasonable end-user states to
describe the complex interaction behavior between the
end-user and the Internet services. In this paper, we define
two general but significant end-user states:

(1) User Communicating State (UCS): Both the end-user’s
Perceptual and Cognitive subsystems are turned ON
to acquire and process the information of the corre-
sponding Internet application.

(2) User Inactive State (UIS): The end-user’s all three sub-
systems are turned OFF with the corresponding
Internet application, and thus there is no interaction
between the end-user and that application.

The above-defined two states essentially depict the two
typical engagement levels of the end-user with the Internet
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Fig. 3. Model Human Processor (MHP) framework.
applications based on the three subsystems of MHP. For
other situations and intermediate engagement levels, we
simply define them as Unidentified User State (UUS). Note
that the three defined end-user states can be applied to
any Internet applications, such as the Web browser, where
each Web page tab is considered as one single application.
Each running application can be associated with only one
end-user state: User Communicating State, User Inactive
State or Unidentified User State.

From the definition of these end-user states, we know
that monitoring and recognizing the status of the end-
user’s three MHP subsystems is the most straightforward
way to identify the real-time end-user states:

� For the end-user Perceptual subsystem, MHP shows
that the most important memories for the human per-
ceptual processors are the Visual Image Storage and
the Auditory Image Storage. Thus the User Module
monitors the source of the visual and auditory informa-
tion, or more specifically which application generates
the visual or auditory output. On the other hand, the
User Module should also verify whether the end-user
perceives that visual or auditory output.
� For the end-user Cognitive subsystem, although many

researchers attempt to model and build the cognitive
architecture [29], it is still difficult to accurately differ-
entiate its status. Fortunately, MHP demonstrates that
the Motor subsystem follows the Recognize-Act Cycle
of the Cognitive Processor. Thus through monitoring
the Motor subsystem behavior, the User Module can
estimate the status of the Cognitive subsystem.
� Within the end-user Motor subsystem, the arm-hand-

finger system is considered as the most important actu-
ator by MHP. Therefore, from observing the keyboard
and the mouse input information, the User Module
can deduce the specific application which the end-
user’s Cognitive subsystem is working on. Moreover,
MHP takes the human vocal system as another actuator
of the end-user Motor subsystem. Hence, it is also a sig-
nificant clue to deduce which application is being pro-
cessed by the Cognitive subsystem of the end-user.

Based on the above analysis of MHP and the newly de-
fined end-user states, five communication conditions with
the corresponding Validation Criteria, as shown in Table 1,
need to be verified by the User Module. Note that for each
specific application, the given communication conditions
in Table 1 should be verified respectively according to
the corresponding Validation Criteria.

We implement a User Interface subsystem specifically
designed for detecting the five communication conditions
in Table 1. For example, it can automatically monitor and
collect valuable real-time information from the operating
system, such as which application is displaying in the fore-
ground of the screen and which application is receiving the
mouse/keyboard input. Moreover, a common USB or a
built-in Webcam, as shown in Fig. 4, can directly serve as
a sensor to capture the end-user’s open eyes and estimate
the eyes-gaze direction, and thus can efficiently sense
whether the end-user is watching the network host screen.
The Open Source Computer Vision (OpenCV) library [30]
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Communication conditions and corresponding validation criteria.
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and the existing visual tracking algorithms [31,32], greatly
facilitate building such a video-based eye-tracking system.
Besides verifying the Validation Criteria in Table 1, the
User Interface subsystem also records some important net-
work conditions. For example, it can periodically sample
the bandwidth consumption of each running Internet
application from both the transport layer and the physical
layer at the end-user side. To measure the bandwidth con-
sumption in real-time, a third party driver called WinPcap
[33] is employed in the User Interface to intercept packets
flowing through the network adapter. All the collected
interaction data of end-user and the network-related infor-
mation are directly delivered to the shared database. Some
functions have not been implemented for the current ver-
sion of our User Interface subsystem such as sensing
whether the end-user is sitting near the speaker, but a
great deal of research has been done for solving such posi-
tioning problems and many RFID location sensing systems
have been commercialized [34]. Our User Interface subsys-
tem is mainly developed in Visual C++ under Microsoft.NET
Framework on Win32 platform.

After implementing such User Interface subsystem, we
can efficiently develop end-user models for various
Internet services. Rather than covering a large number of
Internet applications, we have chosen three representative
Internet services with their corresponding applications for
Fig. 4. Sensors in the User Interface subsystem.
our user study: Web Browsing, Live Multimedia Streaming
and File Transferring.

� The primary purpose of Web Browsing is to bring the
information on the Web Server to the end-user. In our
user study, we select the popular Web browser: Mozilla
Firefox.
� Live Multimedia Streaming provides live television or

live radio service over the Internet. It always requires
a minimum guaranteed bandwidth allocation, because
the real-time video/audio programs are sensitive to
fluctuations of the received rate. A Live Multimedia
Streaming application called QQQTV is used in our user
study.
� File Transferring refers to copying a file to or from a

remote host over the Internet, and it is also one of the
most utilized Internet services. We use CuteFTP, which
is a widely-used file transfer application based on the
standard File Transfer Protocol (FTP), in our user study.

Based on our implemented User Interface subsystem
and the defined end-user states, we conduct a user study
with multiple participants to determine the end-user mod-
els for each of the above-described application. A group of
simple but effective end-user models are summarized in
Table 2.

In Table 2, we see that different combinations of com-
munication conditions for the corresponding Internet ser-
vices indicate different end-user states, where ‘‘S’’ means
satisfying the corresponding communication condition,
‘‘F’’ denotes failing to satisfy it, ‘‘X’’ means either of the
above two options, and ‘‘n/a’’ indicates not applicable for
that application. For example, when the User Interface sub-
system has verified that the end-user is perceiving the vi-
sual and auditory information, i.e., the communication
conditions (1) and (2) in Table 1, from QQQTV (live stream-
ing application), then the User Communicating State can
be directly associated with QQQTV regardless of whether
the end-user generates the Mouse, Keyboard and Micro-
phone input to QQQTV, i.e., the communication conditions
(3), (4) and (5) in Table 1. On the other hand, when the
User Interface subsystem has verified that the end-user is
not perceiving any visual and auditory information from
QQQTV and also not generating any Mouse and Keyboard
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input to QQQTV, then the User Inactive State can be
associated with QQQTV regardless of the Microphone input
condition. Furthermore, we categorize other possible com-
binations of communication conditions, which are not de-
scribed in Table 2, into Unidentified User State (UUS). The
end-user models in Table 2 work well for the given appli-
cations in most situations, and more complicated end-user
models for some specific circumstances can be constructed
through other cognitive psychology architectures and ad-
vanced reasoning approaches.

From the end-user perspective, the built end-user mod-
els based on the MHP can efficiently detect the User Com-
municating State and the User Inactive State for the given
Internet services and applications in real-time. From the
network perspective, it is also necessary and significant
to build such models to differentiate the Internet end-
user’s communicating and inactive state. The main reason
is that today’s Internet still follows the traditional design
principle that it serves as the communication medium
between any two hosts that desire speaking to each other.
In other words, Internet communication protocols with the
layered architecture do not take into account the end-user
state, and essentially conflate the dynamic end-user and
the static network host into one simple concept, namely
the Internet host. For example, Hypertext Transfer Protocol
(HTTP) and Transmission Control Protocol (TCP) follow
such traditional principle, and they have been widely used
to support various Internet services, including the above-
described Web browsing, Live Multimedia Streaming and
File Transferring services. Such traditional design principle
greatly decreases the complexity of today’s Internet com-
munication protocol design, but inevitably compromises
the underlying network performance and accordingly
causes many problems, such as the end-user QoE issue
and the end-user mobility issue. Therefore, the built end-
user models in Table 2 under the User Module architecture
essentially provide Internet an efficient de-conflation solu-
tion to separate the end-user from the Internet host and
recognize the two basic end-user states.

In order to introduce the identified real-time end-user
states into the Internet protocol stack, the Control subsys-
tem needs to make the necessary adjustment to the corre-
sponding communication protocols in a way of selecting
and tuning the proper parameters. To demonstrate this,
we select two parameters in HTTP and TCP, namely the
persistent connection timeout in HTTP and the advertised
window size in TCP, and present two distinct exemplary
User Module applications in the following sections,
respectively.

5. The User Module application 1: HTTP

In the first User Module application, the Control subsys-
tem mainly manages the persistent connection timeout in
HTTP based on the derived end-user states. Such applica-
tion could effectively reduce the end-user perceived la-
tency in Web browsing and the unnecessary network
traffic.

5.1. Problem description

Hypertext Transfer Protocol (HTTP) [35] is the de facto
application-layer communication standard for transferring
the Web pages. The persistent connection mechanism of
HTTP/1.1, also called HTTP keep-alive, allows HTTP clients
to send multiple requests over the same TCP connection.
The persistent connection mechanism reduces network
congestion from re-establishing TCP connections and con-
serves the host’s CPU and memory usage. As a default func-
tion, persistent HTTP connection is widely implemented on
both the browser and the server sides. HTTP/1.1 [35] spec-
ifies that ‘‘servers will usually have some time-out value be-
yond which they will no longer maintain an inactive
connection’’, and ‘‘the use of persistent connections places
no requirements on the length (or existence) of this time-out
for either the client or the server’’. Clearly, HTTP/1.1 does
not explicitly define the persistent connection-closing
mechanism but suggests picking a proper timeout value
for terminating the persistent connection. In the practical
implementation of HTTP/1.1, a fixed timeout value is al-
ways imposed. The latest version 2.2.1 of the Apache HTTP
Server employs 5 s, and the Microsoft IIS uses 120 s as their
default timeout values. Improperly configuring the timeout
value will easily degrade network performance. A small
fixed timeout value causes low utilization of the persistent
HTTP connection, and thus increases the end-user per-
ceived latency as well as the Internet burden. Conversely,
a large fixed timeout value will waste and even quickly ex-
haust limited Web server resource, which also results in
long and unpredictable end-user perceived latency.

There is limited research work to optimally tune the
persistent connection timeout value of HTTP to improve
Web server performance: Faber [36] and Barford [37] indi-
cate that the Web server should close the persistent con-
nections once the client becomes inactive, but no specific
approach has been provided. Mogul [38] proposes to give
higher priority to the newly established connections, while
Sugiki [39] suggests setting higher priority to the small RTT
connections and prematurely terminate the ones with
large RTT. However, none of these previous studies directly
solves the main problem of HTTP persistent connection
mechanism. In a Web session, it is difficult for HTTP to dis-
criminate between a persistent connection that is being used
by the end-user and a persistent connection that is already
in a long-term idle state. Therefore, adopting the built
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end-user models under the User Module framework be-
comes a natural and effective way to address this problem.
In order to transfer the derived end-user states information
from the client side to the Web server side, it is necessary
to first define the User State Transfer Protocol (USTP).
5.2. User State Transfer Protocol (USTP)

The User State Transfer Protocol (USTP) is used to deliver
the real-time individual end-user state from the client side
to the server side. The USTP assumes a reliable transport
and in this case using HTTP persistent connection, which
is essentially the TCP connection, as its underlying carrier.
The USTP works under the client–server architecture and
employs the request-response message exchange pattern.
The overall workflow of the USTP is illustrated in Fig. 5:

(1) After the persistent HTTP connection becomes idle,
the Web server side USTP program waits for a time
interval and then initiates a request message to
the client side via the existing persistent HTTP
connection.

(2) Upon receiving the USTP request, the client side
USTP program retrieves the real-time individual
end-user state from the User Model subsystem of
the User Module. The retrieved end-user state can
be User Communicating State, User Inactive State
or any other pre-defined end-user state.

(3) The client side USTP program encapsulates that real-
time end-user state in an USTP response message,
and sends it back to the Web server side.

(4) The Web server side USTP program receives multiple
USTP response messages from different client sides.
Then it delivers those end-user states and relevant
information to the group user model subsystem for
further processing.

(5) After some time interval, the server side USTP pro-
gram repeats the request via the same persistent
HTTP connection, if that connection still exists and
remains in the idle state.

Theoretically, the USTP should adjust the time interval
between consecutive requests according to the end-user’s
browsing behavior pattern. Based on the MHP theory, the
end-user’s browsing behavior primarily depends on his
Cognitive subsystem, whose tasks involve learning,
retrieving the facts from its long-term memory and acquir-
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Fig. 5. The User State Transfer Protocol workflow.
ing the solution of the problem. Through practical user
study and theoretical calculation, MHP shows that the cog-
nitive processing rate has a wide range among different
individuals because of their different processing capacities.
For example, human reading speed ranges from 52 to 652
words per minute; in working memory, the decay param-
eter varies from 5 to 226 s. In other word, even for the
same Web page, different end-users require different pro-
cessing times and the variance magnitude can be several
seconds or even larger. We simplify this cognitive diversity
by using 7 s, the average decay parameter value of the hu-
man cognitive subsystem [13], as the time interval value of
USTP. In the future work, the User Interface and the User
Model subsystem could attempt to capture the end-user’s
individual cognitive capacity and roughly predict the pro-
cessing time, then the system performance can be further
improved.

Remark 1. The current USTP operates only in the simple
condition, and a more complicated situation occurs when
one or more intermediaries are present between the end-
user and the Web server, such as when a proxy server is in
use. Under such situation, a new version of USTP needs to
be specified.
Remark 2. Transferring end-user state information to ser-
ver side may raise security concerns. When necessary,
some encryption protocols, such as the Transport Layer
Security (TLS), could be adopted to prevent eavesdropping
or tampering. Meanwhile, the User Module should also
make every effort to process end-user information locally
and avoid any unnecessary transmission between two
ends.

The USTP is designed to provide a timely delivery of the
individual end-user state from the User Module’s client
side to its server side. The current version of the USTP pre-
sumes a reliable transmission carrier and defines a simple
invocation function us_remote_request () on the server side.
Hence, it is also applicable to other User Module applica-
tions that require the dissemination of the derived end-
user states.

5.3. The control subsystem

Once the USTP response message successfully transfers
multiple end-user states to the Web server side, the group
user model can utilize the delivered information to help en-
hance server performance. For example, a group user model
could classify all the delivered User Communicating States
into several categories according to their duration time, and
accordingly the Web server would provide the service dif-
ferentiation to these fine-grained categories, e.g., shorter
duration receiving higher priority. Since we mainly aim to
reduce individual end-user perceived latency, we do not
build the group user model for this application but simply
move each delivered end-user state to the Control subsys-
tem at the server side to continue processing.

After successfully obtaining the real-time end-user
state, the Control subsystem at the server side adopts the
following control rules:
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(1) IF the User Inactive State arrives, THEN the Control
subsystem immediately signals the application layer
to terminate the corresponding HTTP persistent con-
nection, i.e., setting the persistent connection time-
out parameter to zero.

(2) IF the User Communicating State arrives, THEN the
Control subsystem signals the application layer to
maintain the corresponding HTTP persistent connec-
tion and wait for the next end-user state from the
same client, i.e., setting the persistent connection
timeout parameter to any large value.

(3) IF the Unidentified User State arrives and the Web
Server is under the heavy-traffic situation, THEN
the Control subsystem handles it as the User Inactive
State. Otherwise the Control subsystem treats it as
the User Communicating State.

The above control rules enable the inflexible HTTP per-
sistent connection mechanism adapt to the end-user’s
real-time browsing behavior, and influence the end-user
perceived latency as well as the network performance.
Consequently, we conduct comprehensive experiments
for assessing the performance gain from both the end-user
and the network perspectives.

5.4. Experimental setup

5.4.1. Server-side implementation issues
We select the Apache HTTP Server in our experiment, as

it is a popular open-source Web server. The current Apache
HTTP Server 2.2 is configured by writing different Direc-
tives in its configuration files, and the HTTP persistent
timeout value is set in the main configuration file by the
KeepAliveTimeout Directive. The Apache HTTP Server
places the KeepAliveTimeout Directive in its main configu-
ration file apache2.conf and sets 5 s as its default value.
However, any changes to the KeepAliveTimeout Directive
can only be recognized by the server when it is started or
restarted, because the Apache HTTP Server only reads
and processes the main configuration files during its
boot-up phase. Furthermore, the KeepAliveTimeout Direc-
tive can only simply set the same timeout value for all
incoming HTTP requests, so different timeout values can-
not be set for different HTTP connections which are initi-
ated by distinct end-users. Since the existing Apache
configuration mechanism and KeepAliveTimeout Directive
cannot meet our requirements, we therefore disable the
KeepAliveTimeout Directive and modify a small part of
the Apache source code, where the Apache Server imple-
ments the HTTP persistent connection function. The newly
modified Apache HTTP Server can adaptively adjust the
timeout value according to the real-time end-user state,
and it does not require any restart or reboot. Meanwhile,
the newly modified Apache HTTP Server can also set differ-
ent timeout values for different incoming HTTP requests,
which are initiated by distinct end-users.

We employ the dynamic Web pages as the workload file
in our experiment. Thus PHP code is embedded into the
workload HTML files and interpreted by the PHP processor
module. We install and configure the PHP 5.3.2 module on
the modified Apache HTTP Server under the Linux 2.6.28.
The average PHP processing time in the experiment is
50 ms, which also takes accounts for the time to access
the database.

5.4.2. Client-side implementation issues
In order to emulate multiple end-users’ Web browsing

scenarios, the experiment requires a specific HTTP request
generator to perform the following functions:

� The HTTP request generator can emulate the defined
User Communicating State and User Inactive State. Dur-
ing the User Communicating State, the generator starts
to make a HTTP request and after receiving the whole
Web page from the server, waits for a certain time
interval (end-user processing time) before it sends the
next HTTP request. The generator repeats the above
procedure until the User Communicating State ends.
Then, during the User Inactive State, it simply keeps
silent and stops sending HTTP request until the User
Communicating State resumes.
� To simulate multiple concurrent end-users and create

heavy-traffic condition, the HTTP request generator
should be able to simultaneously open multiple sockets
and initiate HTTP requests through each socket
independently.

Existing popular Web workload generators, such as
SPECweb2005 [40] and Surge [41] cannot fulfill both of
these functions, thus we implement a new HTTP request
generator. The new generator is written based on Libwww
[42], which is a highly modular and flexible client side Web
API for both UNIX and Windows (Win32) platform. We
build the new HTTP request generator under the Linux
2.6.28 and all the code is written in C. The new HTTP re-
quest generator can open multiple sockets simultaneously,
and control the HTTP requests on each socket. The next
HTTP request can only be sent after receiving the last HTTP
response and waiting for some manually defined time
interval. Therefore, the newly built HTTP request generator
can emulate multiple end-users generating HTTP requests
concurrently, while any one of its open sockets simulates
single end-user’s Web browsing behavior by means of
sequentially sending HTTP requests.

5.4.3. Experimental configuration
Our experimental hardware setup involves several

hosts connected to the campus local area network (LAN).
Each host is equipped with Duo Intel T7300 2.00-GHz pro-
cessors, and a 2-GB RAM, and runs Linux 2.6.28. One of the
hosts is selected as the Web server and runs Apache HTTP
Server 2.2.15. Other hosts act as multiple end-users and
keep generating HTTP 1.1 requests to the Web server. For
different traffic load cases, each host simulates different
numbers of end-users ranging from 30 to 300. The experi-
ment topology, as depicted in Fig. 6, consists of multiple
end-users and one Apache HTTP Server.

In the experiment, we adopt Dummynet [43] to emulate
the practical Internet environment. Dummynet is a widely-
used tool for enforcing queue and bandwidth limitation,
delay and packet loss in the network experiment and test.
We enable its delay function and set the configuration
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parameter to 100 ms for both directions of each link. So the
Round Trip Time (RTT) between the client and the Web
server is around 250 ms, which consists of the packet-
propagation delays, PHP processing time and packet-
queuing delays. We also set the packet loss rate to 1%,
which is usually caused by the congestion and data corrup-
tion along the path of data transmission. The above condi-
tions commonly exist in a Wide Area Network (WAN) as
well as the last-hop wireless networks environments. Since
optimizing the Web server’s overall performance is out of
the scope of this experiment, most of the configuration
parameters of the Apache HTTP Server are kept at their de-
fault values. For example, the maximum number of con-
nections can be processed simultaneously by the Apache
HTTP Server is 256 in the experiment.

We consider two experimental conditions: light-traffic
condition and heavy-traffic condition. Note that the heavy-
traffic condition here is different from the server overload
situation. The heavy-traffic condition means that the num-
ber of concurrent alive clients reaches the maximum num-
ber of allowable connections, while the overload situation
indicates that the workload persistently exhausts some
server resources, such as the CPU load or the server uplink
bandwidth. Since system performance always becomes
unstable under such overload situation, we do not consider
it in our experiment and we suppose that the Web server
employs some admission control schemes, such as in
[44,45] to avoid overload situation. For the light-traffic con-
dition, each host emulates 10 end-users and keeps sending
HTTP requests to the server, and thus 3 hosts emulate to-
tally 30 concurrent end-users. For the heavy-traffic condi-
tion, all the settings are the same as the light-traffic
condition, but each host emulates 100 end-users and thus
300 concurrent end-users in total.

In the experiment, the end-user state only transits be-
tween the User Communicating State and the User Inactive
State, which can be modeled as a 2-state Markov process.
Moreover, we suppose that the real-time end-user state
can always be correctly identified by the User Model sub-
system. When in the User Communicating State, we as-
sume that each end-user makes sequential HTTP requests
following a homogeneous Poisson process with a rate of
7 requests per minute. After sending 10 HTTP requests dur-
ing the User Communicating State, each end-user will
Dummynet WAN 
Emulator

Host 1

Router Server

Host 2

Host 3

Simulate 
Multiple

End-Users

Fig. 6. Network topology in the experiment.
automatically transit to the User Inactive State. During
the User Inactive State interval, the end-user stops gener-
ating the HTTP requests to the Web server until the User
Communicating State resumes. In the experiment, the
HTTP request generator periodically alternates between
the two end-user states and repeats 3 cycles, which means
each end-user experiences 3 User Communicating States
and 3 User Inactive States. Thus each end-user sends a total
of 30 HTTP requests during the experiment. Since the time
interval of the User Inactive State varies irregularly and
only depends on practical occasions, we simply set this va-
lue to 30 s in the experiment. To collect more accurate
experimental data, we repeated the experiment 3 times
with random starting order of the 3 hosts. Then we average
out the observations from all the end-users.

5.5. Experiment results

Based on the above-described experimental setup, we
study the network performance and contrast the results
with the case without the User Module. We select the
Web page response time as the performance metric to
evaluate the end-user perceived latency. The Web page re-
sponse time is the time interval that starts when the end-
user sends the Web request and ends when the end-user
receives the last object of that Web page. Besides the
Web page response time, we also study the Web traffic sta-
tistics and the server aggregate throughput to assess the
influence of adding the User Module. The collected Web
traffic statistics in this experiment includes the number
of the successfully delivered Web pages, and the number
of HTTP requests transferred between the server and the
clients. The Web server aggregate throughput is the sum
of the server generated data rates that are successfully pro-
vided to all the clients.

We first investigate the case under the heavy-traffic
condition and experiment with two groups of Web pages,
which are similar to the SPECweb benchmark [40]. In the
first group, the mean size of the generated dynamic Web
pages is smaller than 5 KB, and in the second group the
mean size is larger than 50 KB. Fig. 7(a) shows the average
Web page response time of the small size group, Fig. 7(b)
shows that of the large size group, and Fig. 7(c) describes
the end-user state transitions during the experiment. From
Fig. 7(a) and (b), we see that the User Module case can sig-
nificantly shorten the average Web page response time of
both groups. In contrast to the results where the fixed
timeout are used (1, 5 and 15 s), the User Module case
can save at least 200 ms on average. It roughly equals to
the back-and-forth time on the wire, namely one round
trip packet-propagation delay. This is because the User
Module can actively extend the lifecycle of the HTTP
connections when the end-user stays in the User Commu-
nicating State, and thus avoid multiple unnecessary
re-establishments of the new HTTP connections. Note that
in contrast to the 15 s timeout case under the heavy-traffic
condition, the User Module case reduces even more aver-
age Web page response time. The main reason is that the
fast increasing number of end-users results in a large num-
ber of concurrent HTTP persistent connections. With the
15 s fixed timeout value, the Web server cannot terminate
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inactive connections and allocate the scarce server re-
source to the newly incoming clients in a timely manner.
This causes the number of concurrent persistent HTTP con-
nections to easily reach the upper limit of the Apache HTTP
Server, which is set to 256 in this experiment. When this
happens, new incoming HTTP connections must wait
either in the SYN-queue or the ACK-queue of the Apache
Web server. Such queuing delay at the server side can eas-
ily amount to several seconds and thus greatly influences
the Web page response time. From the collected data of
the 15 s timeout case, we see that the Web page response
time of the late arriving end-users varies from hundreds to
thousands of milliseconds, although the early arriving
end-users can still attain quite small response time. Thus
in the 15 s timeout case, the high and unstable queuing de-
lay experienced by the late arriving end-users lead to the
large average Web page response time and significant fluc-
tuations, which are evident in Fig. 7(a) and (b).

Fig. 8 shows the ratio of the total number of HTTP re-
quests sent by the end-users to the total number of the suc-
cessfully transferred Web pages. For both the small and the
large page size groups, the User Module case achieves the
smallest ratio, i.e., 1.11 and 1.08, respectively. The 1 s fixed
timeout case results in the highest ratio, i.e., 1.95 and 1.97,
which indicates that almost two HTTP requests are re-
quired to fetch one Web page. This is because once the
small timeout occurs, the Web server will send a TCP seg-
ment with the FIN bit set to 1 and enter the FIN_WAIT_1
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state. But the Web browser may continue sending new but
already invalid HTTP requests through the same connection
before it sends the clients’ side TCP segment with the FIN
bit. Besides the transmission of invalid HTTP requests, the
unnecessary re-establishment and closing the HTTP con-
nection also significantly increases the burden on both
the Web server and the Internet backbone. Note that in
practice most Web browsers usually open multiple concur-
rent HTTP connections for fetching one Web page and dif-
ferent browsers adopt different mechanisms to reduce the
unnecessary retransmission. Accordingly, the absolute va-
lue of the ratio may vary case by case, but its relative trend
will be the same as shown in Fig. 8.

Under the heavy-traffic condition, the average throughput
of the Web server hosting the large Web page group is shown
in Fig. 9. We see that introducing the User Module cannot in-
crease the server throughput, since the aggregate throughput
does not greatly depend on the timeout value. However,
Fig. 9 shows that with the equivalent aggregate throughput,
the User Module case achieves the smallest HTTP request
rates, and thus also demonstrates the significant reduction
of the burden on the server and the Internet backbone.

The experimental results under the light-traffic condi-
tion are comparable with the results under the heavy-
traffic condition. The User Module case also shortens the
average Web page response time, as shown in Fig. 10, and
reduces unnecessary traffic burden on the server and Inter-
net. Similar to the heavy-traffic condition, the User Module
case reduces almost the equivalent of one round trip pack-
et-propagation delay when compared to the 1 s and 5 s
fixed timeout cases. The only difference is that the 15 s
timeout case can also achieve quite short average Web page
response time under the light-traffic condition. It is because
that the number of concurrent active clients never reaches
the maximum number of allowable connections in the Web
server. Moreover, during the User Communicating State,
the time interval between the consecutive HTTP requests
is always smaller than 15 s, and thus the HTTP persistent
connections will not be terminated by the Web server as
frequently as the small timeout value cases.

5.6. Analysis and discussion

Prior studies [46,47] have shown that the Web page re-
sponse time greatly influences the end-user QoE in Web
browsing. With the same QoE rating measurement (called
Opinion Scores), the quantitative relationship between the
end-user QoE and the Web page response time has been
investigated: ITU-T G.1030 [47] demonstrates that the loga-
rithmic relationship fits well, while Shaikh et al. [46] shows
that the exponential relationship gives the best correlation
result. The two relationships are compared in [21], where
a generic exponential relationship between the end-user
QoE and the QoS parameters has been suggested. Those re-
sults illustrate that the mathematical relationship between
the end-user QoE and the Web page response time may vary
due to the diversity of the participants in user studies and
the network configurations. However, all the derived mod-
els verify that the Opinion Scores monotonously increases
with the decreasing Web page response time. Therefore, it
confirms our initial claims that such User Module applica-
tion would enhance the end-user QoE through improving
the underlying network performance.

On the other hand, from the experimental results, we
see that the current version of HTTP, with either small or
large fixed timeout values, is unable to achieve optimal
operation in terms of managing its persistent connection
mechanism. It is because no end-user state information
available for HTTP and even for the whole application
layer. Therefore, the built end-user models under the User
Module framework is an effective solution to bridge the
gap between HTTP and the Web end-users.
6. The User Module application 2: TCP

In the second User Module application, the Control sub-
system mainly manipulates the advertised window size in
TCP protocol based on the derived end-user states. This
application aims to enhance the end-user QoE through
dynamically allocating the limited bandwidth resource
on the transport layer.

6.1. Problem description

As a connection-oriented and reliable Transport Layer
communication protocol, Transmission Control Protocol
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(TCP) [48] is an indispensable component of the modern
Internet protocol stack. Many Internet services and their
applications rely on TCP as their transport carrier, such as
File Transferring service (CuteFTP), Web Browsing (Fire-
fox), Electronic Mailing (Microsoft Outlook), and some Live
Multimedia Streaming service (QQQTV).

As mentioned earlier, TCP also follows the traditional
Internet design principle that assuming two communicat-
ing hosts always desire speaking to each other. Hence, an
individual TCP stream always intends to maximize its
own throughput unless the network congestion or the
receiver buffer overflow happens. It has been proved that
when multiple TCP streams compete the same bottleneck
link, the stream with a smaller RTT can always receive a
much larger share of that bottleneck link bandwidth than
other streams with larger RTT [49]. Therefore, TCP always
favors an Internet application with short RTT regardless
of the end-user preference and other influential factors.
Such TCP property can easily influence, and even impair
the end-user QoE, especially when the end-user want to
prioritize the Internet application with larger RTT. For in-
stance, an end-user may simultaneously open CuteFTP to
download a large file and QQQTV to watch online TV. As
a live multimedia streaming application, QQQTV always
requires a minimum guaranteed bandwidth, but some
CuteFTP connections with small RTT can easily grab most
of the available bandwidth at the bandwidth-limited
access link, where the last mile bottleneck exists. In order
to enable TCP to provide such bandwidth prioritization ser-
vice for enhancing the end-user QoE, adopting the built
end-user models under the proposed User Module archi-
tecture is also a natural and effective solution.

6.2. The control subsystem and experimental results

In order to actively allocate network resource at the
bandwidth-limited access link, the Control subsystem of
the User Module needs to leverage on the flow control
mechanism of TCP. The original objective of the TCP flow
control mechanism is to obviate the TCP sender overflow-
ing the TCP receiver’s local buffer. Different from the
well-known TCP congestion control mechanism, the TCP
flow control mechanism maintains a variable called adver-
tised window at TCP receiver side. The advertised window
size is always set to the amount of spare room in the buffer,
and is included in each TCP acknowledgement returned to
the TCP sender. Thus, the advertised window can actually
limit the maximum number of bytes a sender is allowed
to transmit before receiving the next acknowledgment
from the receiver side.

There has been some prior work on adjusting the adver-
tised window size in [50,51]. Most prior work follows a
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similar mathematical model describing the relationship
between the sending rate V of a TCP connection and its
advertised window size:

V ¼Wrec

RTT
; ð1Þ

where Wrec is the advertised window size in bits and RTT is
the average round trip time of the corresponding TCP
connection in seconds. The above mathematical model suf-
ficiently describes the TCP flow control mechanism,
although it simplifies the other complicated TCP mecha-
nisms such as the congestion control dynamics [52]. The
above model is based on the following assumptions:

� The access link or the last hop link is the bottleneck link
of the whole networks, which commonly exists in wired
and wireless networks.
� The packet loss probability is small and thus we neglect

the effect of the TCP slow start and the time-out
mechanism.
� Only long-term bulk-transfer Internet applications are

considered, since the short-term small sessions are
likely to have completed before they can influence the
end-user QoE.

From Eq. (1), we see that adjusting the advertised win-
dow size at the receiver side can directly influence the TCP
sending rate. Therefore, the Control subsystem can redis-
tribute the limited bandwidth resource at the access link
to different Internet applications by manipulating the
advertised window size at the TCP receiver side. Further-
more, Eq. (1) also shows that the sending rate V is inversely
proportional to the RTT, and the Control subsystem can
either employ the TCP timestamp option [53] or the meth-
od proposed in [54] to calculate the average RTT. Note that
implementing such a control subsystem at the TCP receiver
side for adjusting the advertised window size does not
require any changes to the existing TCP protocol.

We set up our experiment with the two Internet applica-
tions QQQTV and CuteFTP: the end-user opens QQQTV for
watching the online live TV program (ESPN channel), and
meanwhile uses CuteFTP to download a zip file (200 MB).
To enable the access link to be the bottleneck link in the
experiment, we employ NetLimiter [55] at the end-user
side to limit the overall incoming throughput to 1.0 Mbps.
Since the main objective of such User Module application
is to enhance the end-user QoE, we conduct the specific
user study to investigate the relationship between the
bandwidth consumption of QQQTV and the corresponding
end-user QoE. End-users are asked to provide their subjec-
tive responses about the QQQTV performance on the Opin-
ion Score scale from 5 to 1. The following grades are used:
5 = Excellent, 4 = Good, 3 = Average, 2 = Poor, 1 = Bad. In to-
tal, 4 female and 5 male test users attended the study with
an age distribution between 20 and 55 years (mean
32.3 years, median 29.4 years). In terms of watching live
streaming multimedia and Internet usage, all participants
are rather advanced. The solid line in Fig. 11 depicts the
end-user QoE on QQQTV as a function of the allocated
bandwidth (from 100 Kbps to 1000 Kbps, error bars repre-
senting 95% confidence intervals). The outcome of the user
study demonstrates that the Opinion Score is Good when
the allocated bandwidth above 400 Kbps, and the Opinion
Score drops to almost Poor when the allocated bandwidth
below 320 Kbps, i.e., QQQTV’s performance deteriorates to
an unacceptable level for end-users. For the end-user QoE
on CuteFTP, Reichl et al. [56] modeled the QoE on file down-
loading as a function of file size s and download bandwidth
V based on the zero-mean normalization method:

QoE ¼ 0:775
ffiffi

s
p lnðVÞ þ 1:268: ð2Þ

We adopt the above model to describe the relationship
between the bandwidth consumption of CuteFTP and the
corresponding end-user QoE. Given the fixed file size
200 MB, the dash line in Fig. 11 depicts the end-user QoE
on CuteFTP within the same range of the allocated band-
width (from 100 Kbps to 1000 Kbps). From Fig. 11, we
see that allocating enough bandwidth to QQQTV greatly
improves the end-user QoE on QQQTV, while decreasing
the bandwidth for downloading large file has limited
impairment to the end-user QoE on CuteFTP. Hence, when
QQQTV and CuteFTP are running simultaneously and both
in the User Communicating State, QQQTV should be given
the priority to receive enough limited bandwidth resource.
Based on the above experimental results and analysis, the
Control subsystem at the end-user side can implement the
following control rules:

(1) IF QQQTV is in the User Communicating State or the
Unidentified User State and its bandwidth share is
lower than 320 Kbps, THEN the Control subsystem
immediately reduces the advertised window size of
CuteFTP until QQQTV bandwidth share exceeds
400 Kbps.

(2) IF QQQTV switches back to the User Inactive State or
is terminated, THEN the Control subsystem increases
the advertised window size of CuteFTP to the initial
value.

(3) For other possible situations, the Control subsystem
takes no action.

The above control rules ensure that when the end-user
is watching QQQTV, QQQTV is always given priority to re-
ceive enough bandwidth. Meanwhile, CuteFTP can also
keep working with the leftover network resource rather
than be forcibly paused or closed. When the end-user stops
concentrating on QQQTV, the Control subsystem will take
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back the privilege given to QQQTV and allow the running
CuteFTP to fairly compete for the limited bandwidth re-
source again.

Since we mainly aim to demonstrate the basic design
idea on the second application of the User-Context Module,
the experiment setup is relatively simple. With more com-
plicated conditions, new Control subsystem and control
rules should be re-designed. For example, the Control sub-
system at the server side can also be launched to actively
allocate the limited network resource among different
end-user groups, when a bottleneck link exists at the up-
link of the server. Some data mining and machine learning
algorithms can also be introduced to automatically
generate the control rules based on the end-user interac-
tion data [57].

To achieve fast response and avoid overshoot, we adopt
the commonly-used discrete PD (Proportional and Deriva-
tive) control algorithm to adjust the advertised window
size:

DWrec
k ¼ KpeðkÞ þ KdðeðkÞ � eðk� 1ÞÞ; ð3Þ

where

eðkÞ ¼ R� Vk:

The controller output DWrec
k is used to adjust the adver-

tised window size at the Kth sampling time. R is the target
bandwidth and Vk is the allocated bandwidth at the Kth

sampling time. Kp and Kd are the tuning parameters in
the PD control algorithm. The sampling interval can be
about five RTT of the corresponding TCP connection.

To illustrate the feasibility and effectiveness of the
above-described solution, we implement the Control sub-
system in Network Simulator-2 (NS-2 Version 2.33) [58].
We fulfill the new function module to calculate the real-
time bandwidth consumption for each TCP connection,
and add the proposed PD control algorithm at the TCP sink
side in NS-2. The simulation parameters are identical to the
experiment setting and the end-user state transition on
QQQTV is demonstrated in Fig. 12.

Fig. 13 shows that without the User Module, the band-
width distribution of the bottleneck link (1Mbps in total)
when QQQTV and CuteFTP run simultaneously. We see
that CuteFTP always captures most of the limited band-
width resource, i.e., nearly 800 Kbps, because it has rela-
tively smaller average RTT and enough initial advertised
window size. Therefore, QQQTV always cannot receive
the minimum guaranteed bandwidth, which greatly im-
pairs the end-user QoE on QQQTV. In practice, the end-user
has to manually shut down or pause CuteFTP to facilitate
normal watching QQQTV.

Fig. 14 illustrates that with the User Module, the band-
width distribution of the bottleneck link. When the end-
user starts watching QQQTV, i.e., QQQTV with the User
Communicating State, the User Module can automatically
decrease the bandwidth consumption of CuteFTP until
QQQTV bandwidth share exceeds 400 Kbps. When the
end-user temporarily stops watching QQQTV, i.e., QQQTV
switched to the User Inactive State, the User Module de-
tects this change in real-time. The Control subsystem then
releases the constraints on the advertised window size of
CuteFTP, and takes back the privilege given to QQQTV. Be-
sides, the Control subsystem guarantees that the running
Internet applications always utilize the entire bottleneck
link capacity.

In short, this exemplary application demonstrates how
the User Module empowers end-users to influence band-
width distribution with the aim of enhancing the end-user
QoE. Subsequently, it is necessary to provide a proper and
widely applicable approach to evaluate the variance of the
end-user QoE.

6.3. End-User QoE with the structured approach

As indicated earlier, end-user QoE is a joint conse-
quence of the technical parameters (traditional QoS
parameters), the communication context environment
and the characteristics of the network services in use. Since
large amount of variables and information need to be con-
sidered, Brooks et al. [22] propose a structured approach to
end-user QoE with the following clause:

IF hCommunication Situationi;
USING hService Prescriptioni;
WITH hTechnical Parametersi;
THEN hEnd-User QoEi.

Such structured approach explicitly combines end-
user’s usage context variables and technical parameters to-
gether to measure end-user QoE, and all the attributes in
the bracket have many possible options. For example,
hCommunication Situationi takes into account objective
communication context related to end-users. Therefore,
the User Communicating State, the User Inactive State
and other properly defined end-user states under the User
Module framework can be introduced into the parameter
set of the hCommunication Situationi attribute. The hService
Prescriptioni can be Live Multimedia Streaming (QQQTV),
File Transferring (CuteFTP) or any other types of Internet
services. The hTechnical Parametersi ranges from the bit
rate to the protocol type, and a more complete list is given
in [22]. For the hEnd-User QoEi, the Opinion Score can still
be used to describe end-user satisfaction on the perfor-
mance of the given Internet service.

With the newly introduced structured approach, we can
describe and measure end-user QoE in a more clear and
comprehensive way. Accordingly, Fig. 11 has been ex-
pressed as follows:

IF hUser Communicating Statei;
USING hQQQTVi or USING hCuteFTPi;
WITH hBit Rate (from 100 Kbps to 1000 Kbps)i;
THEN hQoE Results in Fig. 11i.

Note that we take the Bit Rate as the main parameter of
the attribute hTechnical Parametersi, because it is the key
factor to influence the performance of both QQQTV and
CuteFTP. Different technical parameters can be considered
for other Internet services and applications, e.g., the Web
Page Response Time for Web browsing in the first User
Module application. Moreover, when the parameter of
the hCommunication Situationi is the User Inactive State,
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the Opinion Score in the hEnd-User QoEi can be simply as-
signed ‘‘0’’ regardless of the types of Internet services and
the variance of technical parameters. The main reason is
that the User Inactive State, which has been defined in Sec-
tion 4, essentially implies no interaction between the end-
user’s all three MHP subsystems and the corresponding
Internet service, and thus it results little influence on the
end-user’s subjective satisfaction.

Given the structured approach and the end-user state
transition on QQQTV depicted in Fig. 11, we further con-
sider the following two specific scenarios describing the
end-user state on CuteFTP:

Scenario A: CuteFTP always with the User Inactive State
(End-user is unaware of CuteFTP download-
ing from the beginning to end).

Scenario B: CuteFTP always with the User Communicat-
ing State (End-user is aware of CuteFTP
downloading even when watching QQQTV).

Based on the bandwidth distribution results in Figs. 13
and 14, we can calculate the Cumulative Opinion Score
(COS), i.e., the sum of the Opinion Score on QQQTV and
CuteFTP, for the above-described two scenarios, respec-
tively. Fig. 15(a) illustrates the variances of the COS under
the Scenario A: since the Opinion Score on CuteFTP keeps
zero (CuteFTP always with the User Inactive State),
Fig. 15(a) essentially depicts the end-user Opinion Score
on QQQTV. Therefore, we clearly see that introducing the
User Module effectively prevents the end-user QoE on
QQQTV falling down to the Poor level and maintains it at
a high satisfaction level during QQQTV with the User Com-
municating State. Fig. 15(b) demonstrates the variances of
the COS under the Scenario B: we see that the User Module
can still dramatically increase the COS during QQQTV with
the User Communicating State, although the end-user
Opinion Score on CuteFTP would be slightly decreased be-
cause of the less bandwidth allocated to it. Such result
indicates that when the User Module provides high QoE
on QQQTV, it does not influence much on the overall QoE
of the Interne end-user under the scenario B.

Note that the given scenarios are the two extreme cases
depicting the end-user state with CuteFTP. In reality, the
end-user is more likely to frequently switch between the
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two defined user states (and even some unidentified states)
caused by human complex internal conscious and uncon-
scious psychological and cognitive factors [59]. With the po-
sitive COS results shown in Fig. 15(a) and (b), we can
tentatively conclude that the proposed User Module can
effectively enhance the end-user QoE in practice with the
built Control subsystem. Moreover, the structured approach
to end-user QoE efficiently specifies the key parameters and
is applicable to a wide range of the User Module applications.
7. Conclusion

In this paper, we rethink the communication network
design issues by introducing the AmI concept and end-user
factor into the Internet protocol stack. We thus propose the
User Module framework: the User Interface subsystem is
built to fully sense Internet end-users, the User Model sub-
system employs cognitive and HCI knowledge to model
and recognize end-user states, and the Control subsystem
directly interacts with the network protocols through tun-
ing their critical parameters. The proposed framework are
validated by the two User Module applications, which also
partly demonstrate the User Module’s operations, practices
and impacts. The Internet experiments with the evaluation
results confirm our initial claims that the proposed User
Module can effectively enhance the end-user QoE and im-
prove the underlying network performance.
These contributions lay a solid foundation for future
research:

� With the aim of enhancing the Internet as a user-centric
AmI communication system, the User Module can
explore its interactions with many other critical
parameters in all existing protocols and layers, such as
the session-related variables in Real Time Streaming Pro-
tocol (RTSP) on Application Layer or the security-related
variables in Internet Protocol Security (IPsec) on Network
Layer.
� Based on the latest progress on the fields of pervasive

sensing technology and the cognitive psychology, the
User Interface and User Model subsystems can be fur-
ther developed and upgraded. New significant context
information of the end-user can be collected and
accordingly explicit end-user states can be defined.
� On the server side, the group user model could help

enhance server performance and facilitate batch process-
ing. Designing the group user model and how it can influ-
ence overall system performance require further study.

We also hope this work could open up a new realm for
innovations on next generation Internet architecture with
the clean-slate design approach [6]. For example, some
standard control interfaces for tuning the adjustable and
critical network parameters can be explicitly defined on fu-
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ture Internet protocols or Internet services [60]. Such de-
sign would enable the User Module to provide a general
solution for the Internet to utilization of the end-user’s
key context information.

In summary, all these efforts go towards supporting a
user-centric, context-aware and highly adaptive communi-
cation network.
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